
2024-12-26

ii

Contents

Preface vii

What this book is about . vii

What this book is not about . viii

Distinguishing Characteristics of This Book . viii

Conventions . viii

Acknowledgements and Corrections . ix

1 Welcome to R 1

1.1 What is R? . 1

1.2 R and Biology . 1

1.3 Popularity of R . 2

1.4 A Brief History . 2

1.5 Copyrights and Licenses . 9

1.6 R and Reliability . 9

1.7 Installation . 9

Exercises . 9

2 Some Basics 11

2.1 First Steps . 11

2.2 First Operations . 12

2.3 Expressions, Assignments and Objects . 14

2.4 Getting Help . 20

2.5 Options . 22

2.6 The Working Directory . 24

2.7 Saving and Loading Your Work . 24

2.8 Basic Mathematics . 26

2.9 RStudio . 34

Exercises . 47

3 Data Objects, Packages, and Datasets 49

3.1 Data Storage Objects . 49

3.2 Boolean Operations . 57

3.3 Testing and Coercing Classes . 59

3.4 Accessing and Subsetting Data With [] . 65

iii

iv CONTENTS

3.5 Packages . 72

3.6 Facilitating Command Line Data Entry . 80

3.7 Importing Data Into R . 81

Exercises . 84

4 Basic Data Management 89

4.1 Operations on Arrays, Lists and Vectors . 89

4.2 Other Simple Data Management Functions . 96

4.3 Matching, Querying and Substituting in Strings 101

4.4 Date-Time Classes . 114

Exercises . 115

5 Welcome to the Tidyverse 119

5.1 The Tidyverse . 119

5.2 Pipes . 120

5.3 tibble . 123

5.4 dplyr . 124

5.5 stringr . 131

5.6 lubridate . 132

5.7 reshape2 . 135

Exercises . 136

6 Base Graphics 139

6.1 Introduction . 139

6.2 Simple Base Graphics Examples . 139

6.3 Graphical Devices . 144

6.4 par() . 145

6.5 Exporting Graphics . 148

6.6 text(), points(), and lines() . 149

6.7 Geometric Shapes . 152

6.8 axis() . 152

6.9 Font Typefaces . 153

6.10 Colors . 156

6.11 Scatterplots . 163

6.12 Transformations . 166

6.13 Multiple Plots . 167

6.14 Histograms . 171

6.15 Controlling Graphical Features using Vectors . 172

6.16 Secondary Axes . 174

6.17 Barplots . 175

6.18 Boxplots . 180

6.19 Interval Plots . 183

6.20 matplot() . 186

6.21 Interactivity . 188

6.22 Three Dimensional Graphics . 189

CONTENTS v

6.23 Animation . 192

Exercises . 194

7 Grid Graphics, Including ggplot2 197

7.1 Grid Graphics . 197

7.2 lattice . 197

7.3 ggplot2 . 201

Exercises . 249

8 Functions 251

8.1 Introduction to Functions . 251

8.2 Global vs. Local Variables . 256

8.3 Useful Functions for Writing Functions . 259

8.4 Loops . 263

8.5 Functional Programming . 269

8.6 Functions with Classes and Methods . 270

8.7 Advanced Biometric Examples . 284

8.8 The Process of Function Evaluation in R . 287

Exercises . 287

9 R Interfaces 291

9.1 Interpreted versus Compiled Languages . 292

9.2 Interfacing with R Markdown/RStudio . 292

9.3 Fortran and C . 293

9.4 C++ . 299

9.5 Python . 299

Exercises . 314

10 Building R Packages 317

10.1 Introduction . 317

10.2 Package Components . 317

10.3 Datasets (the data Subdirectory) . 319

10.4 R Code (the r Subdirectory) . 320

10.5 Documentation (the man Subdirectory) . 320

10.6 The DESCRIPTION File . 322

10.7 The NAMESPACE File . 324

Exercises . 325

11 Interactive andWeb Applications 327

11.1 Introduction to GUIs . 327

11.2 tcltk . 328

11.3 JS and JSON Interactive Apps . 345

11.4 plotly . 346

11.5 shiny . 351

11.6 Comparison of GUI-generating Approaches . 377

vi CONTENTS

Exercises . 379

12 R and Your Computer 381

12.1 How Do Computers Work? . 381

12.2 Base-2 and Base-10 . 383

12.3 Bits and Bytes . 384

12.4 Decimal to Binary . 385

12.5 Binary to Decimal . 386

12.6 Double Precision . 390

12.7 Binary Characters . 392

12.8 Optimizing R . 393

Exercises . 394

Index of Terms 403

Index of R Operators and Functions 409

Preface

What this book is about

This book explores the ever expanding universe of R. Specifically, it considers:

• The historical development of the R language, the R engine, and the installation of R (Ch

1)

• The creation of R objects and their fundamental characteristics (Ch 2)

• R data storage entities, and the import and export of user data files (Ch 3)

• Data management approaches using base R (Ch 4) and the tidyverse (Ch 5)

• R approaches to graphics, includingbaseplottingmethods (Ch6) and theggplot2package

(Ch 7)

• R functions (Ch 8) including loops, and the creation of user-defined classes and generic

methods

• Interfacing other languages (e.g., C, Fortran, C++, Python) and software environments to

and from R (Ch 9)

• Building custom R packages (Ch 10)

• R Interactive interfaces and web applications including approaches from the packages

tcltk, plotly and shiny (Ch 11)

• The fundamental ways that R interacts with your computer (Ch 12)

While this book covers a lot of ground, clearly many other topics could be considered. Subjects

explored are those I have found to be particularly useful or interesting during my 20+ years of

using R as a biologist and statistician. Chapters concerning advanced topics (i.e., Chs 8-12) are

intended to be starting points for further exploration, and the reader is directed to additional

resources when necessary.

My view is that R is an important computer language. While ignored in many phenologies of

computer languages (e.g., Boutin et al., 2002), R has had a large, devoted following for decades

and its computational engine and language can be clearly linked to seminal concepts and ad-

vances in computer science. Further, from its inceptionR has been a tool formetaprogramming

vii

viii CONTENTS

wherein code is shared and modified programmatically. For instance R has a wide variety of

widely used APIs for languages like C, Fortran, C++, Java, Python, and many other others.

Individuals from the natural sciences, particularly biologists, are likely to find this book more

useful than individuals from other backgrounds because coding examples and applications

are generally biological. Non-biologists may find, however, that examples readily extend to

other settings.

What this book is not about

Notably, although statistics is the primary focus/purpose of R, the primary emphasis of this

book is not statistics. Instead I focus on the R language, and the characteristics, capabilities,

and extensions of the R system. I take this approach because: 1) coverage of non-statistical

topics is challenging in and of itself, and 2) the responsible introduction of statistical algorithms

from any program or language (including R) should be accompanied by detailed information

concerning the statistical procedures. Many pedagogic resources exist for the statistical

application of R. These include: Aho (2014) (the pedagogic statistical companion to this book),

Venables and Ripley (2002), (Faraway, 2004, 2016), Crawley (2012), and Fox andWeisberg

(2019), among others. It should be noted that while this text does not focus on inferential

statistical methods, it does emphasize methods for handling, summarizing and displaying

empirical data, and these steps may serve as a prerequisite for formal inferential analyses.

Distinguishing Characteristics of This Book

Many other sources have emphasized fundamental programming aspects of R, while largely

ignoring statistics, including seminal texts (e.g., Chambers, 2008, 2020; Wickham, 2016, 2021),

and definitive CRAN manuals (R Core Team, 2024a,b,c), or have focused on particular, po-

tentially non-statistical R attributes, including graphics (Wickham, 2016; Murrell, 2019) and

web-based applications (Wickham, 2021; Sievert, 2020). This book is a brave/foolish? at-

tempt to amalgamize and distill this disparate information, while occasionally emphasizing

topics earlier works have ignored. For instance, Wickham (2019) admirably emphasizes many

foundational and advanced programming ideas in R, but does not thoroughly consider some

important programming extensions, including powerful syntheses with Python and Tcl. Unlike

many other texts, this book also adheres to the format of a textbook, with numerous worked

(often biological) examples, and exercises at the end each chapter.

Conventions

This document has been created with Windows users of R in mind. In the vast majority of

cases, however, instructions and examples will be extendable to other operating systems. In

cases when this is not true I note steps to address these inconsistencies.

Several conventions are followed throughout the text. R package names and important terms

CONTENTS ix

are italicized. R function names, function arguments and objects are written in blocked

Courier font. Functions and operations are often written into “chunks” whose contents

are readily copied to a clipboard using an icon located at the top right of the chunk (HTML

version of text only). For example:

print("hello world")

The output from an evaluated chunk is generally printed immediately below. For example:

[1] "hello world"

Acknowledgements and Corrections

I thank individuals who have reviewed/edited this book in various forms including Lauren

Tucker and Adam Zambie. Corrections and comments are welcome, and can sent using the

book’s GitHub site.

x CONTENTS

Chapter 1

Welcome to R

”I believe that R currently represents the best medium for quality software in support

of data analysis.”

- John Chambers, Developer of S

”R is a real demonstration of the power of collaboration, and I don’t think you could

construct something like this any other way.”

- Ross Ihaka, original co-developer of R

1.1 What is R?

R is a computer language and an open source setting for statistics, data management, com-

putation, and graphics. The outward mien of the R-environment is minimalistic, with few

menu-driven interactive facilities (nomenus exist for some implementations of R). This is in

contrast to conventional statistical software consisting of black box, menu-dominated, often

inflexible tools. The simplicity of R allows one to easily evaluate, edit, and build procedures

for data analysis, and many other purposes.

1.2 R and Biology

I am a statistical ecologist, so this book was written with natural scientists, particularly bi-

ologists, in mind. R is useful to biologists for three major reasons. First, it provides access

to a large number of cutting edge statistical, graphical, and organizational procedures, many

of which have been designed specifically for biological research. Second, biological datasets,

including those from genetic and spatiotemporal research can be extensive and complex. R

can readily manage and analyze such data. Third, analysis of biological data often requires

analytical and computational flexibility. R allows one to “get under the hood”, look at the

code, and check to see what algorithms are doing. If, after examining an R-algorithm we are

unsatisfied, we can generally modify its code or create new code to meet our specific needs.

1

2 CHAPTER 1. WELCOME TO R

1.3 Popularity of R

Because of its freeware status, the overall number of people using R is difficult to determine.

Nonetheless, the R-consortium website estimates that there are currently more than two

million active R users. The r4stats website houses up-to-date surveys concerning the popu-

larity of analytical software. These surveys (accessed 10/23/2024) indicate that R is often

preferred among data scientists for big data projects and data mining. R is also one of the

most frequently cited statistical environments in scholarly articles, one of the most frequently

used languages on the GitHub repository, and one of the most frequently discussed languages

on Stack Overflow. In 2024 the R language was ranked 20th in the world by the Institute

of Electrical and Electronics Engineers (IEEE), and was recently (10/23/2024) ranked 6th

by the PopularitY of Programming Language (PYPL) Index, which uses the search string 'X
tutorial', as an indicator of future language usage. Further, in a 2017 survey, based on Stack

Overflow queries, Rwas the “least disliked” programming language.

The growth and popularity of R can be partially tied to its relatively straightforward extend-

ability via user generated functions and packages. This characteristic prompts a strong sense

of community among R-users, along with a practical need for the perpetuation and upkeep

of the R system. While trailing Python, there are currently over 20000 formally contributed

R-packages at the Comprehensive R Archive Network (CRAN).

1.4 A Brief History

R was created in the early 1990s by Australian computational statisticians Ross Ihaka and

Robert Gentleman (Fig 1.1) to address scope1 and memory use deficiencies in its primary

progenitor language, S (Ihaka and Gentleman, 1996). Ihaka and Gentleman used the name R

both to acknowledge the influence of S (because r and s are juxtaposed in the alphabet), and

to celebrate their own personal efforts (because R was the first letter of their first names).

Figure 1.1: Ross Ihaka (1954 -) (L) and Robert Gentleman (1959 -) (R), the co-creators of R.

At the insistence of Swiss statistician Martin Maechler (Fig 1.2l), Ihaka and Gentleman dis-

tributed the R source code in 1995 under the Free Software Foundation’s GNU general license

1In computer science, scope refers to the degree of binding between an identifier of an entity (e.g., an object

name) and the entity itself (e.g., an object).

https://www.r-consortium.org/
https://r4stats.com/articles/popularity/
https://github.com/
https://stackoverflow.com/
https://spectrum.ieee.org/top-programming-languages-2022
https://www.ieee.org/
https://pypl.github.io/PYPL.html
https://stackoverflow.blog/2017/10/31/disliked-programming-languages/
https://cran.r-project.org/

1.4. A BRIEF HISTORY 3

(Ihaka, 1998). Because of its relatively easy-to-learn language, Rwas quickly extended with

code and packages developed by its users. The rapid growth of R gave rise to the need for a

group to guide its progress. This led, in 1997, to the establishment of the R-development core

team2, an international panel that modifies, troubleshoots, and manages source code (Fig 1.2).

Figure 1.2: A recent version of the R-core development team.

1.4.1 Development of the R Language

The R language is based on older languages, particularly S, developed at Bell Laboratories

(Becker and Chambers, 1978, 1981; Becker et al., 1988), and Lisp3 (McCarthy, 1978) and

Scheme, a dialect of Lisp (Sussman and Steele Jr, 1998; Steele, 1978), which were developed at

the MIT artificial intelligence laboratory in the late 1970s (Fig 1.3).

In the appendix to his book Software for Data Analysis, John M. Chambers (Fig 1.2b), a pri-

mary developer of S, recounts the unique evolution and goals of S from its inception in 1976

(Chambers, 2008). Chambers notes that Swas originally intended to be an analysis toolbox

solely for the statistics research group at Bell Labs, consisting of roughly 20 people at the

2The first R-core consisted of: Douglas Bates, Peter Dalgaard, Robert Gentleman, Kurt Hornik, Ross Ihaka,

Friedrich Leisch, Thomas Lumley, Martin Mächler, Paul Murrell, Heiner Schwarte, and Luke Tierney. Several of

these individuals remain in the current R-core (Fig 1.2).
3Lisp, an abbreviation of “LISt Processor”, is the second-oldest (after Fortran) high-level programming language

still in common use.

4 CHAPTER 1. WELCOME TO R

Figure 1.3: John McCarthy (1927-2011), creator of the Lisp language, and the first to coin the

term ”artifical intelligence”, working at the MIT AI laboratory. Lisp was the first language that

allowed information to be stored as distinct objects, rather than simply collections of numbers.

time. It was decided that S (initially known as “the system”) would have fundamental ex-

tensibility4, reflecting the Bell Labs’ philosophy that “collaborations could actually enhance

research” (Chambers, 2008)5. The S language definition, and details concerning the fitting and

application of S statistical models are given in Becker et al. (1988) and Chambers and Hastie

(1992), respectively6.

Swas designed to diminish inner functional details of its underlying Fortran7 algorithms while

making important higher-level processes more readily accessible and interactive. The inspira-

tion for these goals was the exploratory data analysis approach of John Tukey (Fig 1.4), who

was a contemporary of Chambers and other S developers8 at Bell Labs (Chambers, 2020). In a

1965 Bell Labs memo (15 years before the release of S) Tukey noted that modern statistician

found themselves in a “peaceful collision of computing and data analysis” (Chambers, 1999).

An adherence of S to exploratory data analysis was evident in its high-quality, interactive

graphics devices, and easily-accessible function documentation. The initial programmatic

objectives of S are apparent in an early design sketch that describes an outer ‘user interface’

4In software engineering, extensibility is a design principle that provides for future growth. This allows

developers to easily expand the software capabilities.
5Notably, although Swas originally designed to support statistical analysis, Chambers (2020) asserted that its

actual usage at Bell Labs would be viewed today as data science defined as “techniques and their application to

derive and communicate scientifically valid inferences and predictions based on relevant data.”
6Becker et al. (1988) described the third version of S, S3. Chambers and Hastie (1992) introduced formula-

notation using the ~ operator, dataframe objects, and modifications to object methods and classes (Wikipedia,

2024g). These publications were often referred to as the blue book and the white book by S-users, due to color of

their covers.
7Fortran (FORmula TRANslator) is a computer language developed by IBM in the 1950s for science and

engineering applications. Remarkably, it remains useful for many applications, including speeding up slow

looping routines in interpreted languages like R.
8Other important contributors to S included Rick Becker, Trevor Hastie, William Cleveland, and Allan Wilks of

Bell Labs.

1.4. A BRIEF HISTORY 5

Figure 1.4: JohnTukey (1915-2000), widely known for achievements inmathematical statistics,

including the fast Fourier transform (Cooley and Tukey, 1965), tools in exploratory data

analysis, including the boxplot (Tukey et al., 1977), and computer science, where he coined

the term bit, as a unit of binary infomration and memory (Shannon, 1948).

layer to core Fortran algorithms that ultimately produces an S object (Fig 1.5). The underlying

philosophical principles and programmatic foundations of S have strongly affected and guided

the development of R (Chambers, 2020).

S evolved alongside the Unix operating system (also developed at Bell Labs) which currently

underlies Macintosh and Linux (free-Unix) operating systems9. An early inception S was

written for Unix, allowing S to be portable to any machine using Unix. Both S and Unix were

quickly commercially licensed by AT&T for university and third party retailers. The academic

licensing and distribution of S attracted a large number user groups in 1980s. However, the

lack of a clear open source strategy caused many early users to switch from S to R in the 1990s.

Swas purchased by Insightfulr software 2004 to run the commercial software S-Plusr. In

2021 S-Plusr morphed to include TIBCO connected intelligence software, with some R open

source applications.

1.4.1.1 R is Born

The original Scheme-inspired R interpreter consisted of roughly 1000 lines of C10 code which

was driven by a command line interface that used a syntax corresponding to S, resulting in “a

free implementation of something ‘close to’ version 3 of the S language (S3)” (Ihaka, 1998).

TheR and S languages remain very similar, and codewritten in S can generally be run unaltered

9Unix itself was originally written in assembly language (a low-level programming language with a very strong

correspondence between language instructions and machine/operating system instructions). Unix was later

re-written in C.
10C is a portable, general purpose language, initially developed by Dennis Ritchie (Kernighan and Ritchie,

2002). C, in turn, evolved from the language B, created by Ken Thompson (Thompson, 1972), which, in turn, was

inspired by work on early operating system called Multics (Corbató and Vyssotsky, 1965)

https://www.tibco.com/connected-intelligence

6 CHAPTER 1. WELCOME TO R

Figure 1.5: First designs for the S statistical system, circa 1976 (Chambers, 2008)). Written

in the lower lefthand corner is the important note: ’Names are meaningful to algorithm, not

necessarily to language.’

1.4. A BRIEF HISTORY 7

in R. The method of function implementation in R, however, remains more similar to Scheme.

The official language definition of the current version of R can be found at the CRAN website,

along with other sources of complementary information.

1.4.1.2 Differences of R and S

S3 and the initial release of R differed in two important ways (Ihaka and Gentleman, 1996)11.

First, the R-environment was given a fixed amount of memory at start up. This was in contrast

to S-engines which adjusted available memory to session needs. Among other things, this dif-

ference meant more available pre-reserved computer memory, and fewer virtual pagination12

problems in R (Ihaka and Gentleman, 1996). It also made R faster than S for many applications

(Hornik and the R Core Team, 2023). Second, R variable locations are lexically scoped. In

computer science, variables are storage areas with identifiers, and scope defines the context in

which a variable name is recognized. So-called global variables are accessible in every scope

(for instance, both inside and outside functions). In contrast, local variablesmay only exist

only within particular localized scopes. Formal parameters defined in R functions, including

arguments, are (generally) local variables, whereas variables created outside of functions are

global variables. In contrast to S, lexical scoping allowed functions in R access to variables that

were in effect when the function was defined in a session. The characteristics of R functions

and details concerning lexical scoping are further addressed in Ch 8.

1.4.2 Recent Developments

According to Thieme (2018), a growing component of the R culture includes individuals who

are “Less interested in themechanics ofR than inwhatR allowed them todo.” This group,which

often includes individuals from non-R backgrounds (but with expertise in other languages C,

Java, HTML, etc.), and those “whomay have little interest in becoming computer scientists”, has

been championed by Hadley Wickham (Fig 1.6), creator of the important ggplot2 and dplyr R

packages, and author of many useful books on R programming. A larger collection of packages

supported by Wickham is referred to as the tidyverse (Wickham et al., 2019) (see Ch 5).

1.4.3 The Future of R

It is apparent that R can be tied (particularly via linkages with Fortran and Lisp) to early

examples of software engineering, and (via John Tukey and others) to foundational figures in

data science. The future ofRwill be determined by the formal and informal community of users

who have donated years of their lives to its development without monetary compensation.

Importantly, the continued growth of Rwill require adaptation to the changing demography

of R-users. Like most software endeavors, R has been male dominated (Fig 1.2). However, this

has been changing rapidly. As an example, the R Ladies group, founded in 2012 by Gabriela

de Queiroz (Fig 1.7), currently (8/6/2024) has 225 chapters in 65 countries, and more than

39,000 members worldwide.

11For additional demonstrations of the technical differences of R and S see (Hornik and the R Core Team, 2023)
12Virtual pagination is a memory management scheme that allows a computer to store and retrieve data from

secondary storage for use in main memory.

https://cran.r-project.org/doc/manuals/r-release/R-lang.html#FOOT1
https://rladies.org/

8 CHAPTER 1. WELCOME TO R

Figure 1.6: Hadley Wickham (1979 -) chief scientist at Rstudio.

Figure 1.7: Gabriela de Queiroz, chief data scientist at IBM.

1.5. COPYRIGHTS AND LICENSES 9

1.5 Copyrights and Licenses

R is intentionally open-source and free. Thus, there are no warranties on its environment or

packages. As its copyright frameworkR uses the GNU (a recursive acronym for GNU is not Unix)

General Public License (GPL). This allows users to share and change R and its functions. The

associated legalese can read after typing RShowDoc("COPYING") in the R-console. Because

its functions can be legally (and easily) recycled and altered we should always give credit to

developers, package maintainers, or whomever wrote the R functions or code we are using.

1.6 R and Reliability

The lack of an R warranty has frightened away some scientists. But be assured, with few

exceptions, Rworks as well or better than “top of the line” analytical commercial software.

Indeed, statistical software giants SASr and SPSSr have made R applications accessible from

within their products (Fox, 2009), and R processes and files can be shared directly with

Microsoft Excelr and other proprietary software. For specialized or advanced statistical

techniques R often outperforms other alternatives because of its diverse array of continually

updated applications.

The computing engines and packages that come with a conventional R download (see Section

3.5) meet or exceed U.S. federal analytical standards for clinical trial research (Schwartz et al.,

2008). In addition, core algorithms used in R are based on seminal and well-trusted functions.

For instance,R randomnumber generators include some of themost venerated and thoroughly

tested functions in computer history (Chambers, 2008). Similarly, the Linear Algebra PACKage

(LAPACK) algorithms (Anderson et al., 1999), used by R, are among the world’s most stable

and best-tested software.

1.7 Installation

To install R, first go to the website (http://www.r-project.org/). On this page specify which

platform you are using (Fig 1.8, step 1). R can currently be used on Unix/Linux, Windows and

Mac operating systems. Once an operating system has been selected, one can click on the “base”

link to download the precompiled base binaries if R currently exists on your computer. If R has

not been previously installed on your computer click on “Install R for the first time” (Fig 1.8,

step 2). Youwill delivered to awindow containing a link to download themost recent version of

R by clicking on the “Download” link (Fig 1.8, step 3). Two versions of R are generally released

each year, one in April and one in October. Archived, older versions of R and R packages are

also available from CRAN.

Exercises

1. The following questions concern the history and general characteristics of R.

(a) Who were the creators of R?

https://www.gnu.org/home.en.html
http://www.r-project.org/

10 CHAPTER 1. WELCOME TO R

Figure 1.8: Method for installing R for Windows for the first time.

(b) What are some major developmental events in the history of R?

(c) What languages is R derived from and/or most similar to?

(d) What features distinguish R from other languages and statistical software?

(e) What are the three operating systems Rworks with?

2. Briefly consider R in the context of major historical events in computer software and

artificial intelligence.

Chapter 2

Some Basics

“Learning to write programs stretches your mind, and helps you think better.”

- Bill Gates, 1955-

2.1 First Steps

Upon opening R in Windows, two things will appear in the console of the R Graphical User

Interface (R-GUI)1. These are the license disclaimer (blue text at the top of the console) and the

command line prompt, i.e., > (Fig 2.1). The prompt indicates that R is ready for a command.

All commands in Rmust begin at >.

The appearance of this simple interface will vary slightly among operating systems. In the

Windows R-GUI, the command line prompt and user commands are colored red, and output,

including errors and warnings, are colored blue. In Mac OS, the command line prompt will

be purple, user inputs will be blue, and output will be black. In Unix/Linux, wherein Rwill

generally run from a shell command line, absent of any menus, all three will be black2.

We can exit R at any time by typing q() in the console, closing the GUI window (non-Linux

only), or by selecting Exit from the pulldown File menu (non-Linux only).

1Unix/Linux operating systems require R to be launched from the shell command line by typing: R. This will

begin an interactive R session on the system shell command line itself.
2A Unix/Linux GUI, similar to those inWindows andMac OS, can be initiated by openingRwith the commands:

R -g Tk &.

11

12 CHAPTER 2. SOME BASICS

Figure 2.1: An aged, but still recognizableR console: R version 2.15.1, ”RoastedMarshmallows”,

ca. 2012.

2.2 First Operations

As an introduction we can use R to evaluate a simple mathematical expression. Type 2 + 2
and press Enter.

2 + 2

[1] 4

The output term [1] means, “this is the first requested element.” In this case there is just

one requested element, 4, the solution to 2 + 2. If the output elements cannot be held on a

single console line, then Rwould begin the second line of output with the element number

comprising the first element of the new line. For instance, the command rnorm(20)will take

20 pseudo-random samples (see footnote in Section 9.5.7) from a standard normal distribution

(see Ch 3 in Aho (2014)). We have:

rnorm(20)

[1] -1.283346 -1.052797 1.490190 1.022700 2.312836 0.876447 0.220741
[8] -0.539821 1.231883 -2.102000 -0.408106 -1.027033 -0.513017 1.608686
[15] 0.626468 -0.058989 0.895544 -1.290571 0.103313 2.201916

The reappearance of the command line prompt indicates that R is ready for another command.

Multiple commands can be entered on a single line, separated by semicolons. Note, however,

2.2. FIRST OPERATIONS 13

that this is considered poor programming style, as it may make your code more difficult to

understand by a third party.

2 + 2; 3 + 2

[1] 4

[1] 5

R commands are generally insensitive to spaces. This allows the use of spaces to make code

more legible. To my eyes, the command 2 + 2 is simply easier to read and debug than 2+2.

2.2.1 Use Your Scroll Keys

Aswithmany other command line environments, the scroll keys (Fig 2.2) provide an important

shortcut in R. Instead of editing a line of code by tediously mouse-searching for an earlier

command to copy, paste and then modify, you can simply scroll back through your earlier work

using the upper scroll key, i.e., ↑ . Accordingly, scrolling down using ↓will allow you to move

forward through earlier commands.

Figure 2.2: Typical scroll direction keys on a keyboard.

2.2.2 Note to Self: #

Rwill not recognize commands preceded by #. As a result this is a good way for us to leave

messages to ourselves.

Note at beginning of line
2 + 2

[1] 4

We can even place comments in the middle of an expression, as long the expression is finished

on a new line.

14 CHAPTER 2. SOME BASICS

2 + # Note in middle of line
+ 2

[1] 4

In the “best” code writing style it is recommended that one place a space after # before begin-
ning a comment, and to insert two spaces following code before placing # in the middle of a

line. This convention is followed above.

2.2.3 Unfinished Commands

Rwill be unable to move on to a new task when a command line is unfinished. For example,

type

2 +

and press Enter. We note that the continuation prompt, +, is now where the command prompt

should be. R is telling us the command is unfinished. We can get back to the command

prompt by finishing the function, clickingMisc>Stop current computation orMisc>Stop
all computations from the R-toolbar (non-Linux only), typing Ctrl + C (Linux), or by pressing

the Esc key (all OS).

2.3 Expressions, Assignments and Objects

All entries in R are either expressions or assignments. If a command is an expression it will

be evaluated, printed, and discarded. Examples include: 2 + 2. Conversely, an assignment

evaluates an expression, and assigns a label to the output, but does not automatically print the

result.

To convert an expression to an assignment we use the assignment operator, <-, which repre-

sents an arrow that points to the label of the expression. The assignment operator can go on

either side of an expression.

Example 2.1.

If I type:

x <- 2 + 2

or

2 + 2 -> x

then an R-object is created named x that contains the result of the expression 2 + 2. In fact,

the code: x <- 2 + 2 literally means: “x is 2 + 2.” To print the result (to see x), I simply type:

2.3. EXPRESSIONS, ASSIGNMENTS AND OBJECTS 15

x

[1] 4

or

print(x)

[1] 4

�

In Example 2.1 above we could have typed x = 2 + 2with the same assignment results.

x = 2 + 2
x

[1] 4

However, for this document, I will continue to use the arrow operator, <-, for object assign-
ments, and save the equals sign, =, for specifying arguments in functions (Ch 8).

Note that the R-console can quickly become cluttered and confusing. To remove clutter on the

console (without actually getting rid of any of the objects created in a session) press Ctrl + L

or, from the Edit pulldown menu, click on Clear console (non-Linux only).

2.3.1 Naming Objects

When assigning names to R-objects we should try to keep the names simple, and avoid names

that already represent important definitions and functions. These include: TRUE, FALSE,
NULL, NA, NaN, and Inf. In addition, we cannot have names:

• beginning with a numeric value,

• containing spaces, colons, and semicolons,

• containing mathematical operators (e.g., *, +, -, ^, /, =),
• containing important Rmetacharacters (e.g., @, #, ?, !, %, &, |).

However, even these “forbidden” names and characters can be used if one encloses them in

backticks, also called accent grave characters. For example, the code, `?` <- 2 + 2will create

an object named `?`, containing the number 4.

Names should, if possible, be descriptive. Thus, for a object containing 20 randomobservations

from a normal distribution, the name rN20may be superior to the easily-typed, but anonymous

name, x. Finally, we should remember that R is case sensitive. That is, each of the following

24 combinations will be recognized as distinct: name, Name, nAme, naMe, namE, NAme,
nAMe, naME, NaMe, nAmE, NamE, naME, NAMe, nAME, NaME, NAmE, NAME.

16 CHAPTER 2. SOME BASICS

2.3.2 Combining Data

To define a collection of numbers (or other data or objects) as a single entity one can use the

important R function c, which means “combine”.

Example 2.2.

To define the numbers 23, 34, and 10 collectively as an object named x, I would type:

x <- c(23, 34, 10)

We could then do something like:

x + 7

[1] 30 41 17

Note that seven was added to each element in x.

�

2.3.3 Object Classes

We can view everything created or loaded inR as an object3. Under the idiom of object oriented

programming (OOP), an object may have attributes that allow it to be evaluated appropriately,

and associated methods appropriate for those attributes (e.g., specific functions for plotting,

printing, etc.)4.

I can list objects available in my R session using the function objects() or ls(). Currently,
I only have x (which has been applied and modified several times) in my session (global

environment):

type:
objects()

[1] "x"

#or
ls()

[1] "x"

R objects will generally have a class, identifiable with the function class().

3Although we can view everything created or loaded in R as an object, not all R objects fit neatly into the

OOP perspective of “object-oriented.” This is true because R base objects (which are not object oriented) come

from S, which was developed before anyone considered the need for an S OOP system (see Wickham (2019) and

Chambers (2008)).
4There are many OOP languages including R, C#, C++, Objective-C, Smalltalk, Java, Perl, Python and PHP. C is

not considered an OOP language.

2.3. EXPRESSIONS, ASSIGNMENTS AND OBJECTS 17

class(x)

[1] "numeric"

Objects in class numeric and several other common classes can be evaluated mathematically.

Common R classes are shown in Table 2.1. We will create objects from all of these classes, and

learn about their characteristics, over the next few chapters.

Table 2.1: CommonR classes for some object x. The listed class would be printed if one created
the assignment for x shown in the Example, and typed class(x)

Class Example

logical x <- TRUE
numeric x <- 2 + 2
integer x <- 1:3
character x <- c("a","b","c")
factor x <- factor("a","a","b")
complex x <- 5i
expression x <- expression(x * 4)
function x <- function(y)y + 1
matrix x <- matrix(nrow = 2, rnorm(4))
array x <- array(rnorm(8), c(2, 2, 2))
data.frame x <- data.frame(v1 = c(1,2), v2 = c("a","b"))
list x <- list()

2.3.4 Object Base Types

All R objects will have so-called base types that define their underlying C language data struc-

tures5. There are currently 24 base types used by R (R Core Team, 2024a), and it is unlikely

that more will be developed in the near future (Wickham, 2019). These entities are listed

in Table 2.2. The meaning and usage of some of the base types may seem clear, for instance,

integer and character, which are also class designations (Table 2.1). Other base types are

be addressed in greater detail in later chapters, including list, logical, integer, and NULL
(Ch 3), and closure, special, builtin, environment, pairlist, S4, promise, and symbol
(Ch 8). Base types meant for C-internal processes, i.e., any, bytecode, promise, ..., weakref,
externalptr, and char, are not easily accessible with interpreted R code (R Core Team,

2024b).

Base types of numeric objects define their storage mode, i.e., the way R caches them in its

primary memory6. Base types can be identified using the function typeof().
5Specifically, R base types correspond to an underlying C-codified typedef, i.e., an alias framework for C

data types. This internal algorithm is referred to by by the R-core development team as SEXPTYPE, meaning

S-expression (SEXP) type (R Core Team, 2024a). There are currently 24 SEXPTYPE variants, each corresponding

to one of the 24 R base types.
6The functions mode() and storage.mode() are generally not appropriate for identifying R base types and

18 CHAPTER 2. SOME BASICS

Table 2.2: R base types. The listed base typewould be printed if one created the assignment for

x shown in the Example and typed typeof(x). The function mle, used to create the Example

for base type S4, requires the package stats4.

Base type Example Application

NULL x <- NULL vectors

logical x <- TRUE vectors

integer x <- 1L vectors

complex x <- 1i vectors

double x <- 1 vectors

list x <- list() vectors

character x <- "a" vectors

raw x <- raw(2) vectors

closure x <- function(y)y + 1 closure functions

special x <- `[` special functions

builtin x <- sum builtin functions

expression x <- expression(x * 4) expressions

environment x <- globalenv() environments

symbol x <- quote(a) language components

language x <- quote(a + 1) language components

pairlist x <- formals(mean) language components

S4 x <- stats4::mle(function(x=1)x∧2) non-simple objects

any No example C-internal

bytecode No example C-internal

promise No example C-internal

... No example C-internal

weakref No example C-internal

externalptr No example C-internal

char No example C-internal

typeof(x)

[1] "double"

We see that x has storage mode "double", meaning that its numeric values are stored using

up to 53 bits, resulting in recognizable and distinguishable values between approximately

5 × 10−323 and 2 × 10307 (see Ch 12 for more information).

storage modes (Wickham, 2019). In particular, the function mode() gives the mode of an object with respect

to the S3 system (see Becker et al. (1988)), whereas storage.mode() is generally used when interfacing with

algorithms written in other languages, primarily C or Fortran, to check that R objects have the correct type for

the interfaced language.

2.3. EXPRESSIONS, ASSIGNMENTS AND OBJECTS 19

2.3.5 Object Attributes

Many R-objects will also have attributes (i.e., characteristics particular to the object or object

class). Typing:

attributes(x)

NULL

indicates that x does not have additional attributes. However, using coercion (Section 3.3.2) we
can define x to be an object of class matrix (a collection of data in a row and column format

(see Section 3.1.2)).

attributes(as.matrix(x))

$dim
[1] 3 1

Now x has the attribute dim (i.e., dimension). Specifically, x is a three-celled matrix. It has

three rows and one column.

Amazingly, classes and attributes allow R to simultaneously store and distinguish objects with

the same name. For instance:

mean <- mean(c(1, 2, 3))
mean

[1] 2

mean(c(1, 2, 3))

[1] 2

In general, it is not advisable to name objects after frequently used functions. Nonetheless, the

function mean(), which calculates the arithmeticmean of a collection of data, is distinguishable

from the new user-created object mean, because these objects have different identifiable class
characteristics. We can remove the user-created object mean, with the function rm(). This
leaves behind only the function mean().

rm(mean)
mean

function (x, ...)
UseMethod("mean")
<bytecode: 0x00000242c418c820>
<environment: namespace:base>

The process of how these objects are distinguished by R is further elaborated in Section 8.8.

20 CHAPTER 2. SOME BASICS

2.4 Getting Help

There is no single perfect source for information/documentation for all aspects of R. Detailed

manuals from CRAN are available concerning the R language definition, basic operations, and

package development. These resources, however, often assume a familiarity with Unix/Linux

operating systems and computer science terminology. Thus, they may not be particularly

helpful to biologists who are new to R.

2.4.1 help() and ?

A comprehensive help system is available for many R components including operators, and

loaded package dataframes and functions. The system can be accessed via the question mark,

?, operator and the function help(). For instance, if I wanted to know more about the plot()
function, I could type:

?plot

or

help(plot)

Documentation for packagedR functions (Section3.5)must include an annotateddescription of

function arguments, along with other pertinent information, and documentation for packaged

datasets must include descriptions of dataset variables7. The quality of documentation will

generally be excellent for functions from packages in the default R download (i.e., the R-

distribution packages, see Section 3.5), but will vary from package to package otherwise. A

list of arguments for a function, and their default values, can (often) be obtained using the

function formals().

formals(plot)

$x

$y

$...

For help and documentation concerning programming metacharacters used in R (for instance

@, #, ?, !, %, &, |), one would enclose the metacharacters with quotes. For example, to find out

more information about the logical operator & I could type help("&") or ? "&". Placing two
question marks in front of a topic will cause R to search for help files concerning with respect

to all packages in a workstation. For instance, type:

7Chapter 10 provides instructions on how to develop documentation files for your own packages.

https://cran.r-project.org/doc/manuals/r-release/R-lang.html
https://cran.r-project.org/doc/manuals/r-release/R-intro.html
https://cran.r-project.org/doc/manuals/r-release/R-exts.html

2.4. GETTING HELP 21

??lm

or, alternatively

help.search(lm)

for a huge number of help files on linear model functions identified through fuzzy matching.

Help for particular R-questions can often be found online using the search engine at http:

//search.r-project.org/. This link is provided in the Help pulldown menu in the R console

(non-Linux only). Helpful online discussions can also be found at Stack Overflow, and Stats

Exchange.

2.4.2 demo() and example()

The function demo() allows one access to coded examples that developers have worked out

for a particular function or topic. For instance, type:

demo(graphics)

for a brief demonstration of R graphics. Typing

demo(persp)

will provide a demonstration of 3D perspective plots. And, typing:

demo(Hershey)

will provide a demonstration of available modifiable symbols from the Hershey family of fonts

(see Ch 6 in Hershey (1967)). Finally, typing:

demo()

lists all of the demos available in the loaded libraries for a particular workstation. The function

example() usually provides less involved demonstrations from the man package directories
(short for user manual, see Ch 10) in an R package. For instance, type:

example(plotmath)

for a coded demonstration of mathematical graphics.

2.4.3 Vignettes

R packages often contain vignettes. These are short documents that generally describe the the-

ory underlying algorithms and guidance on how to correctly use package functions. Vignettes

can be accessed with the function vignette(). To view all vignettes for all installed packages

(Section 3.5.1), type:

http://search.r-project.org/
http://search.r-project.org/
https://stackoverflow.com/questions/tagged/r
https://stats.stackexchange.com/
https://stats.stackexchange.com/

22 CHAPTER 2. SOME BASICS

vignette(all = TRUE)

To view all vignettes available for loaded packages (see Section 3.5.2), type:

vignette(all = FALSE)

To view vignettes for the R contributed package asbio (following its installation), type:

vignette(package = "asbio")

To see the vignette simpson in package asbio, type:

vignette("simpson", package = "asbio")

The function browseVignettes() provides an HTML-browser that allows interactive vignette

searches.

2.5 Options

To enhance an R session, we can adjust the appearance of the R-console and customize options

that affect expression output. These include the characteristics of the graphics devices, the

width of print output in the R-console, and the number of print lines and print digits. Changes

to some of these parameters can be made by going to Edit>GUI Preferences in the R-toolbar.

Many other parameters can be changed using the options() function. To see all alterable

options one can type:

options()

The resulting list is extensive. To modify options, one would simply define the desired change

within parentheses following a call to options. For instance, to see the default number of

digits, I would type:

options("digits")

$digits
[1] 5

To change the default number of digits in output from 7 to 5 in the current session, I would

type:

options(digits = 5)
demonstration using pi
pi

[1] 3.1416

2.5. OPTIONS 23

One can revert back to default options by restarting an R session.

2.5.1 Advanced Options

To store user-defined options and start up procedures, an.Rprofile file will exist in your

R program etc directory. This location would be something like: …R/R-version/etc. R

will silently run commands in the .Rprofile file upon opening. Thus, by customizing the

.Rprofile file one can “permanently” set session options, load installed packages, define your

favorite package repository (Section 3.5), and even create aliases and defaults for frequently

used functions.

The.Rprofile file located in theetcdirectory is the so-called.Rprofile.site file. Additional
.Rprofile files can be placed in the working directory (see below). Rwill check for these and

run them after running the .Rprofile.site file.

Example 2.3.

Here is the content of one of my current .Rprofile files.

1 options(repos = structure(c("http://ftp.osuosl.org/pub/cran/")))
2 .First <- function(){
3 library(asbio)
4 cat("\nWelcome to R Ken! ", date(), "\n")
5 }
6 .Last <- function(){
7 cat("\nGoodbye Ken", date(), "\n")
8 }

The commandoptions(repos = structure(c("http://ftp.osuosl.org/pub/cran/")))
(Line 1) defines my preferred CRAN repositorymirror site (Section 3.5). The function .First(
) (Lines 2-5) will be run at the start of the R session and .Last() (Lines 6-8) will be run at

the end of the session. R functions will formally introduced in Ch 8. As we go through this

book it will become clear that these lines of code force R to say hello, and to load the package

asbio, and print the date/time (using the function date()) when it opens, and to say goodbye,

and print the date/time when it closes (although the farewell will only be seen when running

R from a shell interface, e.g., the Windows Command Prompt).

�

One can create .Rprofile files, and many other types of R extension files using the function

file.create(). For instance, the code:

file.create("defaults.Rprofile")

will place an empty, editable,.Rprofile file called defaults in the working directory.

24 CHAPTER 2. SOME BASICS

2.6 TheWorking Directory

By default, the R working directory is set to be the home directory of the workstation. The

command getwd() shows the current file path for the working directory.

getwd()

[1] "C:/Users/ahoken/Documents/Amalgam/Amalgam_Bookdown"

Theworking directory can be changedwith the command setwd(filepath), where filepath
is the location of the desired directory, or by using pulldown menus, i.e., File>Change dir
(non-Linux only). Because R developed under Unix, we must specify directory hierarchies

using forward slashes or by doubling backslashes.

Example 2.4.

To establish a working directory file path to the Windows directory: C:\Users\User\Docu-

ments, I would type:

setwd("C:/Users/User/Documents")

or

setwd("C:\\Users\\User\\Documents")

�

2.7 Saving and Loading YourWork

As noted in Ch 1, an R session is allocated with a fixed amount of memory that is managed

in an on-the-fly manner. An unfortunate consequence of this is that if R crashes, all unsaved

information from the work session will be lost. Thus, session work should be saved often.

Note that Rwill not give a warning if you are writing over session files from the R console. The

old file will simply be replaced. Three general approaches for saving non-graphics data are

possible. These are: 1) saving the history, 2) saving objects, and 3) saving R script. All three of

these operations can be greatly facilitated by using an R integrated development environment

(IDE) like RStudio (Section 2.9).

2.7.1 R History

To view the history (i.e., the commands that have been used in a session) one can use

history(n) where n is the number of previous command lines one wishes to see8. For

8Importantly, the functions savehistory(), loadhistory(), and history() are not currently supported
for Mac OS. There are ways around this. For instance, in RStudio (Section 2.9), the Mac OS command history

can be obtained by clicking theHistory icon that appears on the tool bar at the top of the console window. As

an additional issue, Windows and Unix-alike platforms have different implementations for savehistory() and

2.7. SAVING AND LOADING YOURWORK 25

instance, to see the last three commands, one would type9:

history(3)

To save the session history in Windows one can use File>Save History or the function

savehistory(). For instance, to save the session history to the working directory under

the name history1, I could type:

savehistory(file = "history1.Rhistory")

We can view the code in this file from any text editor. To load the history from a previous

session one can use File>Load History (non-Linux only) or the function loadhistory(). For
instance, to load history1 I would type:

loadhistory(file = "history1.Rhistory")

To save the history at the end of (almost) every interactive Windows or Unix-alike R session,

one can alter the .Rprofile file .Last function to include:

.Last <- function() if(interactive()) try(savehistory("~/.Rhistory"))

2.7.2 R Objects

To save all of the objects available in the current R-session one can use File>SaveWorkspace

(non-Linux only), or simply type:

save.image()

This procedure saves session objects to the working directory as a nameless file using an

.RData extension. The file will be opened, silently, with the inception of the next R- session,

and cause objects used or created in the previous session to be available. Indeed, R will

automatically execute all .RData files in the working directory for use in a session. Stored

.RData files can also be loaded using File>Load Workspace (non-Linux only). One can

also save .RData objects to a specific directory location and use a specific file name using:

File>SaveWorkspace, or with flexible function save(). R data file formats, including .rda,

and .RData, (extensions for R data files), and .R (the format for R scripts), can be read into R

using the function load(). Users new to a command line environment will be reassured by

typing:

load(file.choose())

The function file.choose() will allow one to browse interactively for files to load using

dialog boxes. Detailed procedures for importing (reading) and exporting (saving) data with a

loadhistory(). See help pages for these functions within your platform for particulars.
9This command will not work in an embedded Windows R GUI, like the one in RStudio.

26 CHAPTER 2. SOME BASICS

row and column format, and an explicit delimiter (e.g. .csv files) are described in Ch 3.

2.7.3 R Scripts

To save an R script as an executable source file, it is best to use an integrated development

environment (IDE) compatible with R. R contains its own IDE, the R-editor, which is useful for

writing, editing, and saving scripts as .r extension files. To access the R-editor go to File>New
script (non-Linux only) or type the shortcut Ctrl + F + N (Fig 2.3). Code written in the R IDE

can be sent directly to the R-console by copying and pasting or by selecting code and using the

shortcut Ctrl + R.

Figure 2.3: The R-editor providing code for a famous computational exercise.

Aside from the R-editor, a number of other IDEs outside of allow straightforward generation

of R script files, and a direct link between text editors, that provide syntax highlighting for

R code, and the R-console itself. These include RWinEdt (an R package plugin for WinEdt),

Tinn-R, a recursive acronym for Tinn is not Notepad, ESS (Emacs Speaks Statistics), Jupyter

Notebook, a web-based IDE originally designed for Python, but useful for many languages, and

particularly RStudio, which will be introduced later in this chapter10.

SavedR scripts canbe called andexecutedusing the functionsource(). To browse interactively
for source code files, one can type:

source(file.choose())

or go to File>Source R code.

2.8 Basic Mathematics

A large number of mathematical operators and functions are available with a conventional

download of R.

Elementary mathematical operators, commonmathematical constants, trigonometric func-

tions, derivative functions, integration approaches, and basic statistical functions are shown in

shown in Tables 2.3 - 2.9.

10Other text editors with at least some IDE support for R include, but are not limited to, NppToR in Notepad++,

Bluefish, Crimson Editor, ConTEXT, Eclipse, Vim, Geany, jEdit, Kate, TextMat, gedit, and SciTE.

https://www.winedt.com/
http://www.sciviews.org/Tinn-R
http://ess.r-project.org
https://jupyter.org/
https://jupyter.org/
http://rstudio.org
http://sourceforge.net/projects/npptor
http://bluefish.openoffice.nl/index.htm
http://www.crimsoneditor.com/
http://www.contexteditor.org/
http://www.eclipse.org/eclipse/
http://www.vim.org/
http://www.geany.org/
http://www.jedit.org/
http://kate-editor.org/
http://macromates.com/
http://projects.gnome.org/gedit/
http://www.scintilla.org/SciTE.html

2.8. BASIC MATHEMATICS 27

2.8.1 Elementary Operations

2
8

C
H
A
P
T
E
R
2
.
S
O
M
E
B
A
S
IC
S

Table 2.3: Elementary mathematical operators and functions in R. For all functions x represents a scalar or a numeric vector.

Operator Operation To find: We type:

+ addition 2 + 2 2 + 2
- subtraction 2 − 2 2 - 2
* multiplication 2 × 2 2 * 2
/ division 2

3 2/3
%% modulo remainder of 5

2 5%%2
%/% integer division 5

2 without remainder 5%/%2
∧ exponentiation 23 2∧3
abs(x) ∣ 𝑥 ∣ ∣ −23.7 ∣ abs(-23.7)
round(x, digits = d) round 𝑥 to 𝑑 digits round−23.71 to 1 digit round(-23.71, 1)
ceiling(x) round 𝑥 up to closest whole num. ceiling(2.3) ceiling(2.3)
floor(x) round 𝑥 down to closest whole num. floor(2.3) floor(2.3)
sqrt(x)

√
𝑥

√
2 sqrt(2)

log(x) log𝑒 𝑥 log𝑒 5 log(5)
log(x, base = b) log𝑏 𝑥 log10 5 log(5, base = 10)
factorial(x) 𝑥! 5! factorial(5)
gamma(x) Γ(𝑥) Γ(3.2) gamma(3.2)
choose(n,x) (𝑛𝑥) (52) choose(5,2)
sum(x) ∑𝑛

𝑖=1 𝑥𝑖 sum of x sum(x)
cumsum(x) cumulative sum cum. sum of x cumsum(x)
prod(x) ∏𝑛

𝑖=1 𝑥𝑖 product of x prod(x)
cumprod(x) cumulative product cum. prod. of x cumprod(x)

2.8. BASIC MATHEMATICS 29

2.8.2 Associativity and Precedence

Note that the operation:

2 + 6 * 5

[1] 32

is equivalent to 2+(6⋅5) = 32. This is because the * operator gets higher priority (precedence)
than +. Evaluation precedence can be modified with parentheses:

(2 + 6) * 5

[1] 40

In the absence of operator precedence, mathematical operations in R are (generally) read from

left to right (that is, their associativity is from left to right) (Table 2.4). This corresponds to the

conventional order of operations in mathematics. For instance:

2 + 2^(2 + 1)

[1] 10

Table 2.4: Precedence and associativity of mathematical operators. Operators are listed from

highest to lowest precendece in operations.

Precedent Operator Description Associativity

1 ∧ exponent right to left

2 %% modulo left to right

3 * / multiplication, division left to right

4 + - addition, subtraction left to right

2.8.3 Function Arguments

R functions generally require a user to specify arguments (in parentheses) following the

function name. For instance, sqrt() and factorial() each require one argument, a call to

data itself. Thus, to solve 1/
√
22!, I could type:

1/sqrt(factorial(22))

[1] 2.9827e-11

To solve Γ(3
√
23𝜋), I could type:

gamma((23 * pi)^(1/3))

[1] 7.411

30 CHAPTER 2. SOME BASICS

By default the function log() computes natural logarithms, i.e.,

log(exp(1))

[1] 1

The log() function can also compute logarithms to a particular base by specifying the base in

an optional second argument called base. For instance, to solve the operation: log10 3+ log3 5,
one could type:

log(3, 10) + log(5, 3)

[1] 1.9421

Arguments can be specified by the order that they occur in the list of arguments in the function

code, or by calling the argument by name. In the code above I know that the first argument

in log() is a call to data, and the second argument defines the base. I may not, however,

remember the argument order in a function, or may wish to only change certain arguments

from a large allotment. In this case it is better to specify an argument by calling its name and

defining its value with an equals sign.

log(x = 3, base = 10) + log(x = 5, base = 3)

[1] 1.9421

2.8.4 Constants

R allows easy access to most conventional constants (Table 2.5).

Table 2.5: Conventional constants in R.

Operator Operation To find: We type:

-Inf −∞ −∞ -Inf
Inf ∞ ∞ Inf
pi 𝜋 = 3.141593… 𝜋 pi
exp(1) 𝑒 = 2.718282… 𝑒 exp(1)
exp(x) 𝑒𝑥 𝑒3 exp(3)

2.8.5 Trigonometry

R assumes that the inputs for trigonometric functions are in radians. Of course degrees can

be obtained from radians using 𝐷𝑒𝑔𝑟𝑒𝑒𝑠 = 𝑅𝑎𝑑𝑖𝑎𝑛𝑠 × 180/𝜋, or conversely 𝑅𝑎𝑑𝑖𝑎𝑛𝑠 =
𝐷𝑒𝑔𝑟𝑒𝑒𝑠 × 𝜋/180 (Table 2.6).

2.8. BASIC MATHEMATICS 31

Table 2.6: Trigonometric functions in R. For all functions x represents a scalar or a numeric

vector.

Operator Operation To find: We type:

cos(x) cos(𝑥) cos(3 rad.) cos(3)
sin(x) sin(𝑥) sin(45∘) sin(45 * pi/180)
tan(x) tan(𝑥) tan(3 rad.) tan(3)
acos(x) acos(𝑥) acos(45∘) acos(45 * pi/180)
asin(x) asin(𝑥) asin(3 rad.) asin(3)
atan(x) atan(𝑥) atan(45∘) atan(45 * pi/180)

2.8.6 Derivatives

The function D() finds symbolic and numerical derivatives of simple expressions. It requires

two arguments, a mathematical function specified as an expression (i.e., an object of class and

base type expression, created using the function expression(), that can be evaluated with

the function eval()), and the denominator in the difference quotient. Here is an example of

how functions expression and eval() are used:

eval(expression(2 + 2))

[1] 4

Of course we wouldn’t bother to use expression() and eval() in such simple applications.

Table 2.7 contains specific examples using D().

Table 2.7: Conventional constants in R.

To find: We type:

𝑑
𝑑𝑥5𝑥 D(expression(5 * x), "x")
𝑑2

𝑑𝑥25𝑥2 D(D(expression(5 * x∧2), "x"), "x")
𝜕
𝜕𝑥5𝑥𝑦 + 𝑦 D(expression(5 * x * y + y), "x")

2.8.7 Integration

The function integrate solves definite integrals. It requires three arguments. The first is an

R function defining the integrand. The second and third are the lower and upper bounds of

integration.

Example 2.5.

To solve:

∫
4

2
3𝑥2𝑑𝑥

we could type:

32 CHAPTER 2. SOME BASICS

f <- function(x){3 * x^2}
integrate(f, 2, 4)

56 with absolute error < 6.2e-13

R functions are explicitly addressed in Ch 8. ### StatisticsR, of course, contains a huge number

of statistical functions. These will generally require sample data for summarization. Data can

be brought into R from spreadsheet files or other data storage files (we will learn how to do

this shortly). As we have learned, data can also be assembled in R. For instance,

x <- c(1, 2, 3)

Statistical estimators can be separated into point estimators, which estimate an underlying

parameter that has a single true value (from a Frequentist viewpoint), and intervallic estima-

tors, which estimate the bounds of an interval that is expected, preceding sampling, to contain

a parameter at some probability (Aho, 2014). Point estimators can be further classified as

estimators of location, scale, shape, and order statistics (Table 2.8). Measures of location

estimate the typical or central value from a sample. Examples include the arithmetic mean

and the sample median. Measures of scale quantify data variability or dispersion. Examples

include the sample standard deviation and the sample interquartile range (IQR). Shape esti-

mators describe the shape (i.e., symmetry and peakedness) of a data distribution. Examples

include the sample skewness and sample kurtosis. Finally, the 𝑘th order statistic of a sample is

equal to its 𝑘th-smallest value. Examples include the data minimum, the data maximum, and

other quantiles (including the median). Intervallic estimators include confidence intervals

(Table 2.9). A huge number of other statistical estimating, modelling, and hypothesis testing

algorithms are also available for the R environment. For guidance, see Venables and Ripley

(2002), Aho (2014), and Fox and Weisberg (2019), among others.

2
.8
.
B
A
S
IC

M
A
T
H
E
M
A
T
IC
S

3
3

Table 2.8: Simple point estimators in R. The term x represents a numeric data vector, and y represents a numeric data vector

whose elements are paired with those in x. The cipher asbio:: indicates that the function is located in the package asbio.

Function Acronym Description Estimator type

mean(x) ̄𝑥 arithmetic mean of 𝑥 location

mean(x, trim = t) trimmed mean of 𝑥 for 0 ≤ 𝑡 ≤ 1. location

asbio::G.mean(x) 𝐺𝑀 geometric mean of 𝑥 location

asbio::H.mean(x) 𝐻𝑀 harmonic mean of 𝑥 location

median(x) 𝑥 median of 𝑥 location order statistic

asbio::Mode(x) 𝑚𝑜𝑑𝑒(𝑥) mode of 𝑥 location

sd(x) 𝑠 standard deviation of 𝑥 scale

var(x) 𝑠2 variance of 𝑥 scale

cov(x, y) 𝑐𝑜𝑣(𝑥, 𝑦) covariance of 𝑥 and 𝑦 scale

cor(x, y) 𝑟𝑥,𝑦 Pearson correlation of 𝑥 and 𝑦 scale

IQR(x) 𝐼𝑄𝑅 interquartile range of 𝑥 scale order statistic

mad(x) 𝑀𝐴𝐷 median absolute deviation of 𝑥 scale

asbio::skew(x) 𝑔1 skew of 𝑥 shape

asbio::kurt(x) 𝑔2 kurtosis of 𝑥 shape

min(x) 𝑚𝑖𝑛(𝑥) min of 𝑥 order statistic

max(x) 𝑚𝑎𝑥(𝑥) max of 𝑥 order statistic

quantile(x, prob = p) 𝐹−1(𝑝) quantile of 𝑥 at lower-tailed probability 𝑝 order statistic

34 CHAPTER 2. SOME BASICS

Table 2.9: Some intervallic estimators in R. The term x represents a numeric vector. The cipher

asbio:: indicates that the function is located in the package asbio

Function Description

asbio::ci.mu.z(x, conf, sigma) Conf. int. for 𝜇 at level conf. True SD = sigma.
asbio::ci.mu.t(x, conf) Conf. int. for 𝜇 at level conf. 𝜎 unknown.

asbio::ci.median(x, conf) Conf. int. for true median at level conf.

2.9 RStudio

RStudio is an open source IDE for R (Fig 2.4). RStudio greatly facilitates writing R code, saving

and examining R objects and history, and many other processes. These include, but are not

limited to, documenting session workflows, writing R package documentation, calling and

receiving code from other languages, and even developing web-based graphical user interfaces.

RStudio can currently be downloaded at (https://posit.co/products/open-source/rstudio/).

Like R itself, RStudio can be used with Windows, Mac, and Unix/Linux operating systems,

RStudio has both freeware and commercial versions11. We will use the former here.

Figure 2.4: The RStudio logo.

RStudio is generally implemented using a four pane workspace (Fig 2.5). These are: 1) the

code editor, 2) R-console, 3) Environment and histories, 4) Plots and other miscellany.

11On 7/27/2022 RStudio announced it was shifting to a new name, Posit, to acknowledge its growth beyond

a simple IDE for R. The RStudio name will be retained for RStudio Desktop, and the RStudio Server, but it will

be changed for other applications including the RStudio Workbench (now Posit Workbench) and the RStudio

Package Manager (now Posit Package Manager).

https://posit.co/products/open-source/rstudio/
https://posit.co/products/open-source/rstudio//index

2.9. RSTUDIO 35

Figure 2.5: Interfaces for RStudio 2023.06.2 Build 561.

• The RStudio code editor panel (Fig 2.5, Panel 1) allows you to create R scripts and

scripts for other languages that can be called to and from R. The code panel can also

be used to create and edit session documentation files (see Section 2.9.2 below) and

other important R file types. A new R script can be created for editing within the code

editor by going to File>New>R Script. Commands from an R script can be sent to the

R console using the shortcut Ctrl + Enter (Windows and Linux) or Cmd + Enter (Mac).

• The R console panel (Fig 2.5, Panel 2) by default, is identical in functionality to the R

console of the most recent version of R on your workstation (assuming that all of the

paths and environments are set up correctly on your computer). Thus, the console panel

can be used directly for typing and executing R code, or for receiving commands from

the code editor (Panel 1).

• The environments and history panel (Fig 2.5, Panel 3) can be used to: 1) show a list of

36 CHAPTER 2. SOME BASICS

R objects available in your R session (the Environment tab), or 2) show, search, and

select from the history of all previous commands (History tab). This panel also provides

an interface for point and click import of data files including .csv, .xls, and many other

file formats (Import Dataset pulldown within the Environment tab).

• The plots and files panel (Fig 2.5, Panel 4) can be used to show: 1) files in the working

directory, 2) a scrollable history of plots and image files, and 3) a list of available packages

(via the Packages tab), with facilities for updating and installing packages. If a package

is in the GUI list, then the package is currently loaded. Packages and their installation,

updating, and loading are formally introduced in Section 3.5. The panel’s Files pulldown

tab allows straightforward establishment of working directories (although this can still

be done at the command line using setwd()) (Fig 2.7). The panel’s Help tap opens

automatically when uses ? or help for particular R topics (Section 2.4).

CAUTION!

Be very careful whenmanaging files in the plots and files panel, as you can permanently

delete files without (currently) the possibility of recovery from a Recycling Bin.

2.9.1 RStudio Project

An RStudio project can be be created via the File pulldown menu (Fig 2.7). A project allows

all related files (data, figures, summaries, etc.) to be easily organized together by setting the

working directory to be the location of the project .Rproj file.

2.9.2 Workflow Documentation

We can document workflow and simultaneously run/test R session code by either:

1. creating an RMarkdown .rmd file that can be compiled to make a .html, .pdf, or MSWord

.doc document12, or

2. using Sweave, an approach that implements the LaTeX (pronounced lay-tek) document

preparation system.

2.9.2.1 R Markdown

The RMarkdown document processing workflow in RStudio is shown Fig 2.6. These steps

are highly modifiable, but can also be run in a more or less automated manner, requiring little

understanding of underlying processes.

12Markdown is a highly flexible language for creating formatted text using a plain-text editor. HyperText

Markup Language or HTML is the standard markup language for documents designed for web browser display.

2.9. RSTUDIO 37

Figure 2.6: The process of document creation in R Markdown. Functions in the package

rmarkdown control conversion of .rmd files toMarkdown .md files, using utilities in the package

knitr. The Pandoc program first creates a .tex file when rendering LaTeX PDF documents.

Use ofRMarkdown and .rmd files requires the package rmarkdown (Allaire et al., 2024), which

comes pre-installed in RStudio.

As an initial step, all underlying .rmd files must include a brief YAML13 header (see below)

containing document metadata. The remainder of the .rmd document will contain text written

in Markdown syntax, and code chunks. The knit() function from package knitr Xie (2015),

also installed with RStudio, executes all evaluable code within chunks, and formats the code

and output for processing within Pandoc, a program for converting markup files from one

language to another14. Pandoc uses the YAML header to guide this conversion. As an example,

if one has requested HTML output, the simple Markdown text: This is a script will be

converted to the HTML formatted: <p>This is a script</p>. One can also write HTML

script directly into an .rmd document (see Section 11.5). If the desired output is PDF, Pandoc

will convert the .md file into an intermediate .tex file. This file is then processed by LaTeX,

an open source, high-quality scientific typesetting system15. LaTeX compiles the .tex file into

13YAML is a data serialization language. The YAML acronym was originally intended to mean “Yet Another

Markdown Language,” but more recently has been given the recursive acronym: “YAML Ain’t Markup Language.”

RMarkdown uses the YAML format header to communicate with Pandoc, a document converter, written in the

Haskell language, embedded in RStudio, with respect to desired document output
14Pandoc can convert Markdown .md files, into many formats including, .rtf, .doc, and .pdf
15Support for LaTeX can be found at the and at a large number of informal user-driven venues, including Stack

https://en.wikipedia.org/wiki/Markdown
https://en.wikipedia.org/wiki/Pandoc
https://www.latex-project.org/
https://tex.stackexchange.com

38 CHAPTER 2. SOME BASICS

a .pdf file. In this process, the tinytex package (Xie, 2024), which installs the stripped-down

LaTeX distribution TinyTex, can be used.

A brief introduction to R Markdown can be found at: http://rmarkdown.rstudio.com. A

thorough description of RMarkdown is given in Xie et al. (2018a) and Xie et al. (2020). The

latter text is currently available as an online resource.

Creating anRMarkdowndocument is simple inRStudio. We first open an empty .rmddocument

by navigating to File> New File>RMarkdown (Fig 2.7).

Figure 2.7: Part of the RStudio File pulldown menu.

You will delivered to the GUI shown in Fig 2.8. Note that by default Markdown compilation

generates an HTML document.

Exchange and Overleaf, an online LaTeX application

https://tex.stackexchange.com
https://tex.stackexchange.com
https://yihui.org/tinytex/
https://tex.stackexchange.com
http://rmarkdown.rstudio.com
https://tex.stackexchange.com
https://tex.stackexchange.com
https://bookdown.org/yihui/rmarkdown-cookbook/
https://tex.stackexchange.com
https://tex.stackexchange.com
https://tex.stackexchange.com
https://tex.stackexchange.com
https://tex.stackexchange.com
https://www.overleaf.com/

2.9. RSTUDIO 39

Figure 2.8: RStudio GUI for creating an RMarkdown document.

The GUI opens a RMarkdown (.rmd) skeleton document with a tentative YAML header.

Figure 2.9: YAML header to an RMarkdown (.rmd) skeleton document.

The HTML output can be changed to one of:

output: pdf_document

or

output: word_document

depending on the style of document one desires.

The knitr package facilitates report building in both HTML and LaTeX formats, within the

framework of rmarkdown (Fig 2.6). Under knitr, RMarkdown lines beginning ```{r } and

40 CHAPTER 2. SOME BASICS

ending ``` delimit an R code “chunk” to be potentially run in the R environment. The chunk

header, ```{r }, can contain additional options. For a complete list of chunk options, run

str(knitr::opts_chunk$get())

Code chunks can be generated by going to Code>Insert Chunk or by using the RStudio

shortcut Ctrl + Alt + I (Windows and Linux) or Cmd + Alt + I (Mac). R code can also be invoked

inline in a RMarkdown document using the format:

`r some code`

For instance, I could seamlessly place three random numbers generated from a the continuous

uniform distribution, 𝑓(𝑥) = 𝑈𝑁𝐼𝐹(0, 1), inline into text using:

`r runif(3)`

Here I run an iteration using “hidden” inline R code: 0.01992, 0.77896, 0.79025.

In Markdown, pound signs (e.g., #, ##, ###) can be used as (increasingly nested) hierarchical

section delimiters.

Inline equations for both Markdown and Sweave (discussed below) can be specified under

the LaTeX system, which uses dollar signs, $, to delimit equations. For instance, to obtain the

inline equation: 𝑃(𝜃|𝑦) = 𝑃(𝑦|𝜃)𝑃(𝜃)
𝑃(𝑦) , i.e., Bayes theorem, I could type the LaTeX script:

$(\theta|y) = \frac{P(y|\theta)P(\theta)}{P(y)}$

A cheatsheet for LaTeX equation writing can be found here.

The R Markdown (.rmd) skeleton file has example documentation text, interspersed with

example R code in chunks. These been have been modified below to create a simple summary

document for the dataset Loblolly from the package datasets (Fig 2.10), which describes

growth characteristics of loblolly pine trees (Pinus taeda).

https://quickref.me/latex

2.9. RSTUDIO 41

Figure 2.10: An RMarkdown (.rmd) file with documentation text and interspersed R code in

chunks.

Note the use of echo = FALSE in the final chunk to suppress printing of R code. A snapshot of

the knitted HTML is shown in Fig 2.11.

42 CHAPTER 2. SOME BASICS

Table 2.10: Loblolly pine data

height age Seed

1 4.51 3 301

15 10.89 5 301

29 28.72 10 301

43 41.74 15 301

57 52.70 20 301

71 60.92 25 301

Figure 2.11: An HTML document knit from Markdown code in the previous figure. Note that

code is displayed (by default) as well as executed.

I generally use the function knitr::kable() to createRMarkdown→ Pandoc→HTML tables

because it is relatively simple to use. The code below was used to create Table 2.10.

knitr::kable(head(Loblolly))

I often use functions in the package xtable to build RMarkdown→ Pandoc→ LaTeX→ PDF

2.9. RSTUDIO 43

tables. Under this approach, one could create Table 2.10 using:

print(xtable::xtable(head(Loblolly)))

This method would also require that one use the command results = 'asis' in the

chunk options. One can even call for different table approaches on the fly. For instance,

I could use the command eval = knitr::is_html_output()), in the options of a Mark-

down chunk when using table code that optimizes HTML formatting, and use eval =
knitr::is_latex_output()) to create a table that optimizes LaTeX formatting. Aside from

knitr::kable() and xtable, there are many other R functions and packages that can be used

to create RMarkdown tables, particularly for HTML output. These include:

• The kableExtra (Zhu et al., 2022) package extends knitr::kable() by including styles
for fonts, features for specific rows, columns, and cells, and straightforward merging and

grouping of rows and/or columns. Most kableExtra features extend to both HTML and

PDF formats.

• DT (Xie et al., 2024), awrapper forHTML tables that uses the JavaScript (see Section 11.3)

library DataTables. Among other features, DT allows straightforward implementation in

interactive Shiny apps (Section 11.5).

• Like DT, the reactable package (Lin, 2023) creates flexible, interactive HTML embedded

tables. As with DT, reactable tables add complications when those interactives are

considered as conventional tables in Rmarkdown, with captions and referable labels.

Xie et al. (2020) discuss several other alternatives.

2.9.2.1.1 Bookdown A large number of useful auxiliary features are available for RMark-

down, through the R package bookdown (Xie (2016), Xie (2023)). These include an extended

capacity for figure, table, and section numbering and referencing. To use bookdownwemust

modify the output: designation in the YAML header to be one of the following:

output: bookdown::html_document2

or

output: bookdown::pdf_document2

or

output: bookdown::word_document2

depending on the desired document format.

Numbering R-generated plots and tables in RMarkdown or Bookdown requires specification

of a chunk label after the language reference r in the chunk generating the plot. In the chunk

below I use the label lobplot. Note that a space is included after r. Captions are specified in the
chunk header using the chunk option fig.cap or tab.cap for figures and tables, respectively.

For instance,

44 CHAPTER 2. SOME BASICS

```{r lobplot, echo=FALSE, fig.cap= "Loblolly pine height versus age."}

Cross-references within the text can be made using the syntax \@ref(type:label), where
label is the chunk label and type is the environment being referenced (e.g., fig, tab,
or eq). For the current example, we might want to type something like: “see Figure \@
ref(fig:lobplot)”. in some non-chunk component of the Markdown document.

Specification of output: bookdown::html_document2, or one of the other two bookdown

document options, will result in automated numbering of sections. To turn this numbering off,

one could modify the YAML output to be:

output:
bookdown::html_document2:

number_sections: false

The code indents shown above are important because YAML, like the language Python, uses

significant indentation. To omit numbering for certain sections, onewould retain the bookdown

output, and add {-} after the unnumbered section heading, e.g.,

# This section is unnumbered {-}

For additional details see: ?bookdown::html_document2 and Xie (2016).

2.9.2.2 Sweave

Under the Sweave documentation approach, high quality .pdf documents are generated from

LaTeX .tex files, which in turn are created from Sweave .rnw files. This can also be facilitated

with RStudio. A skeleton .rnw document can be generated by going to File>New File>R
Sweave16. In Fig 2.12 I create an .rnw file with the text and analyses used in the Markdown

example above (Figs 2.10-2.11). We note that instead of the Markdown YAML header, we now

have lines in the preamble defining the type of desired document (e.g., article) and the LaTeX

packages needed for document compilation (e.g, amsmath). Note that R code chunks are now

initiated by <<>>=, which serves as a chunk header and can contain options, and closed with @.
Non-code text, including figure and table captions and cross-referencing should follow LaTeX

guidelines.

16The document you are reading was either knitted from an R Markdown .rmd file (using bookdown) or a

Sweave .rnw file, created in RStudio.



2.9. RSTUDIO 45

Figure 2.12: A Sweave (.rnw) file with documentation text and interspersed code in chunks.

Fig 2.13 shows a snapshot of the .pdf result, following Sweave/LaTeX compilation.



46 CHAPTER 2. SOME BASICS

Figure 2.13: A .pdf document resulting from compilation of Sweave code in the previous figure.

2.9.2.3 Purl

R code can be extracted from an .rmd or or an .rnw file using the function knitr::purl().
For instance, assume that the RMarkdown loblolly pine summary shown in Fig 2.10 is saved

in the working directory under the name lob.rmd. Code from the file will be extracted to a

script file called lob.R, located in the working directory, if one types:



2.9. RSTUDIO 47

purl("lob.rmd")

Exercises

1. Create an RMarkdown document to contain your homework assignment. Modify the

YAML header to allow numbering of figures and tables, but not sections. To test the

formatting, perform the following steps:

(a) Create section header called Question 1 and a subsection header called (a). Under
(a) type "completed".

(b) Under the subsection header (b), insert a chunk, and create a simple plot of points at

the coordinates: {1, 1}, {2, 2}, {3, 3}, by typing the code: plot(1:3) in the chunk.

Create a label for the chunk, and a create caption for plot using the knitr chunk

option, fig.cap.
(c) Under the subsection header (c), create a cross reference for the plot from (b).

(d) Under the subsection header (d), write the equation, 𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝜀𝑖, using
LaTeX. As noted earlier, a LaTeX equation cheatsheet can be found here.

(e) Render (knit) the final document as either an .html file or a .doc file. Include other

assigned exercises for this Chapter as directed, using the general formatting approach

given in Question 1.

2. Perform the following operations.

(a) Leave a note to yourself.

(b) Create and examine an object called x that contains the numeric entries 1, 2, and 3.

(c) Make a copy of x called y.
(d) Show the class of y.
(e) Show the base type of y.
(f) Show the attributes of y.
(g) List the current objects in your work session.

(h) Identify your working directory.

3. Distinguish R expressions and assignments.

4. Sometimes R reports unexpected results for its classes and base types.

(a) Create x <- factor("a","a","b") and show the class of x.
(b) Type ?factor. What is a factor in R?
(c) Show the base type of x? Is this surprising? Why? Type ?integer. What is an

integer in R?

5. Solve the following mathematical operations using R.

(a) 1 + 3/10 + 2
(b) (1 + 3)/10 + 2
(c) (4 ⋅ (3−4)

23 )
2

(d) log2(3
1/2)

(e) 3𝑥3 + 3𝑥2 + 2where 𝑥 = {0, 1.5, 4, 6, 8, 10}
(f) 4(𝑥 + 𝑦)where 𝑥 = {0, 1.5, 4, 6, 8} and 𝑦 = {−2, 0.5, 3, 5, 8}.

https://quickref.me/latex


48 CHAPTER 2. SOME BASICS

(g) 𝑑
𝑑𝑥 tan(𝑥)2.3 ⋅ 𝑒3𝑥

(h) 𝑑2

𝑑𝑥2
3

4𝑥4

(i) ∫12
3

24𝑥 + ln(𝑥)𝑑𝑥

(j) ∫∞
−∞

1√
2𝜋𝑒

−𝑥2
2 𝑑𝑥 (i.e., find the area under a standard normal pdf).

(k) ∫∞
−∞

𝑥√
2𝜋𝑒

−𝑥2
2 𝑑𝑥 (i.e., find𝐸(𝑋) for a standard normal pdf).

(l) ∫∞
−∞

𝑥2
√
2𝜋𝑒

−𝑥2
2 𝑑𝑥 (i.e., find𝐸(𝑋2) for a standard normal pdf).

(m) Find the sum, cumulative sum, product, cumulative product, arithmetic mean,

median and variance of the data x = c(0, 1.5, 4, 6, 8, 10).

6. The velocity of the earth’s rotation on its axis at the equator,𝐸, is approximately 1674.364

km/h, or 1040.401m/h17. We can calculate the velocity of the rotation of the earth at any

latitude with the equation, 𝑉 = cos(latitudeo) × 𝐸. Using R, simultaneously calculate

rotational velocities for latitudes of 0,30,60, and 90 degrees north, or south, latitude

(they will be the same). Remember, the function cos() assumes inputs are in radians,

not degrees.

17The circumference of the earth at the equator is 40,075.02 km (24,901.5 mi). The earth completes one full

rotation on its axis with respect to distant stars in 23 hours 56minutes 4.091 seconds (a sidereal day). Thismeans

that in 24 hours, the earth rotates 24
23+(56/60)+(4.091/60)/60 = 1.002738 times. And this means that the velocity

of the earth at the equator is 1.002738×40075.02
24 = 1674.364 k⋅h−1, or 0.621371 × 1674.364 = 1040.401

m⋅h−1.



Chapter 3

Data Objects, Packages, and Datasets

”In God we trust. All others [must] have data.”

- Edwin R. Fisher, cancer pathologist

3.1 Data Storage Objects

There are five primary types of data storage objects in R. These are: (atomic) vectors, matrices,

arrays, dataframes, and lists1.

3.1.1 Atomic Vectors

Atomic vectors contain data with order and length, but no dimension. This is clearly different

from the linear algebra conception of a vector. In linear algebra, a row vector with 𝑛 elements

has dimension 1 × 𝑛 (1 row and 𝑛 columns), whereas a column vector has dimension 𝑛 × 1.

We can create atomic vectors with the function c, which means combine.

x <- c(1, 2, 3)
is.vector(x)

[1] TRUE

length(x)

[1] 3

dim(x)

1Note that distinctions of these objects are not always clear or consistent. For instance, a names attribute can
be given to elements of vectors and lists, and columns of dataframes. However, only names from dataframes and

lists can be made visible using attach, or called using $. See additional examples here.

49

https://adv-r.hadley.nz/vectors-chap.html


50 CHAPTER 3. DATA OBJECTS, PACKAGES, AND DATASETS

NULL

We can add a names attribute to vector elements. For example,

x <- c(a = 1, b = 2, c = 3)

x

a b c
1 2 3

attributes(x)

$names
[1] "a" "b" "c"

attr(x, "names") # or names(x)

[1] "a" "b" "c"

The function as.matrix(x) (see Section 3.3.2) can be used to coerce x to have a matrix

structure with dimension 3 × 1 (3 rows and 1 column). Thus, in R a matrix has dimension, but

a vector does not.

dim(as.matrix(x))

[1] 3 1

Recall (Section 2.3.4) that an object’s base type defines the (R internal) type or storage mode

of any object. Recall further that the 25 base types include "integer", "double", "complex",
and "character". Elements of vectors must have a single data storage mode. Thus, a vector

cannot contain both numeric and character data.

Importantly, when an element-wise operation is applied to two unequal length vectors, Rwill

generate a warning and automatically recycle elements of the shorter vector. For instance:

c(1, 2, 3) + c(1, 0, 4, 5, 13)

Warning in c(1, 2, 3) + c(1, 0, 4, 5, 13): longer object length is not a
multiple of shorter object length

[1] 2 2 7 6 15

In this case, the result of the addition of the two vectors is: 1+ 1, 2+ 0, 3+ 4, 1+ 5, and 2+ 13.
Thus, the first two elements in the first object are recycled in the vector-wise addition.



3.1. DATA STORAGE OBJECTS 51

3.1.2 Matrices

Matrices are two-dimensional (row and column) data structures whose elements all have the

same data storage mode (typically "double").

The function matrix() can be used to create matrices.

A <- matrix(ncol = 2, nrow = 2, data = c(1, 2, 3, 2))
A

[,1] [,2]
[1,] 1 3
[2,] 2 2

Note that matrix() enters data “by column.” That is, the first two entries in the data argument

are placed in column one, and the last two entries are placed in column two. One can enter

data “by row” by adding the argument byrow = TRUE.

B <- matrix(ncol = 2, nrow = 2, data = c(1, 2, 3, 2), byrow = TRUE)
B

[,1] [,2]
[1,] 1 2
[2,] 3 2

Matrix algebra operations can be applied directly to Rmatrices (Table 3.1). More complex

matrix analyses are also possible, including eigenanalysis (function eigen()), and single value,
QR, and Cholesky decompositions (the functions eigen(), svd(), chol(), respectively).

Table 3.1: Simple matrix algebra operations in R. In all operations 𝐴 (and correspondingly, A)
is a matrix

Operator Operation To.find. We.type.

t() Matrix transpose 𝐴𝑇 t(A)
%*% Matrix multiply 𝐴 ⋅ 𝐴 A%*%A
det() Determinant 𝐷𝑒𝑡(𝐴) det(a)
solve() Matrix inverse 𝐴−1 solve(A)

Example 3.1.

The matrix A, defined above, has the form:

𝐴 = [1 3
2 2] .

Consider the operations:



52 CHAPTER 3. DATA OBJECTS, PACKAGES, AND DATASETS

t(A)

[,1] [,2]
[1,] 1 2
[2,] 3 2

A %*% A

[,1] [,2]
[1,] 7 9
[2,] 6 10

det(A)

[1] -4

solve(A)

[,1] [,2]
[1,] -0.5 0.75
[2,] 0.5 -0.25

�

We can use the function cbind() to combine vectors into matrix columns,

a <- c(1, 2, 3); b <- c(2, 3, 4)
cbind(a, b)

a b
[1,] 1 2
[2,] 2 3
[3,] 3 4

and use the function rbind() to combine vectors into matrix rows.

rbind(a,b)

[,1] [,2] [,3]
a 1 2 3
b 2 3 4

3.1.3 Arrays

Arrays are one, two dimensional (matrix), or three or more dimensional data structures whose

elements contain a single type of data. Thus, while all matrices are arrays, not all arrays are

matrices.



3.1. DATA STORAGE OBJECTS 53

class(A)

[1] "matrix" "array"

As with matrices, elements in arrays can have only one data storage mode.

typeof(A) # base type (data storage mode)

[1] "double"

The function array() can be used to create arrays. The first argument in array() defines the
data. The second argument is a vector that defines both the number of dimensions (this will be

the length of the vector), and the number of levels in each dimension (numbers in dimension

elements).

Example 3.2.

Here is a 2 × 2 × 2 array:

some.data <- c(1, 2, 3, 4, 5, 6, 7, 8)
B <- array(some.data, c(2, 2, 2))
B

, , 1

[,1] [,2]
[1,] 1 3
[2,] 2 4

, , 2

[,1] [,2]
[1,] 5 7
[2,] 6 8

class(B)

[1] "array"

�

3.1.4 Dataframes

Dataframes are two-dimensional structures whose columns can have different data storage

modes (e.g., quantitative and categorical). The function data.frame() can be used to create

dataframes.



54 CHAPTER 3. DATA OBJECTS, PACKAGES, AND DATASETS

df <- data.frame(numeric = c(1, 2, 3), non.numeric = c("a", "b", "c"))
df

numeric non.numeric
1 1 a
2 2 b
3 3 c

class(df)

[1] "data.frame"

Because of the possibility of different data storagemodes for distinct columns, the data storage

mode of a dataframe is "list". Specifically, a dataframe is a list, whose storage elements are

columns.

typeof(df)

[1] "list"

A names attribute will exist for each dataframe column2.

names(df)

[1] "numeric" "non.numeric"

The $ operator allows access to dataframe columns.

df$non.numeric

[1] "a" "b" "c"

The function attach() allows R to recognize column names of a dataframe as global variables.

attach(df)
non.numeric

[1] "a" "b" "c"

The function detach() is the programming inverse of attach().

detach(df)
non.numeric

Error in eval(expr, envir, enclos): object 'non.numeric' not found

2Matrices and arrays which, optimally, will both be numeric storage structures, cannot have a names attribute.
Instead, row names and column names can be applied using the functions row.names() and col.names(). These,
however, cannot be made visible to search paths with attach() or called with $.



3.1. DATA STORAGE OBJECTS 55

The functions rm() and remove()will entirely remove any R-object, including a vector, ma-

trix, or dataframe from a session. To remove all objects from the workspace one can use

rm(list=ls()) or (in RStudio) the “broom” button in the environments and history panel3.

A safer alternative to attach() is the function with(). Using with() eliminates concerns

about multiple variables with the same name becoming mixed up in functions. This is because

the variable names for a dataframe specified in with()will not be permanently attached in an

R-session.

with(df, non.numeric)

[1] "a" "b" "c"

3.1.5 Lists

Lists are often used to contain miscellaneous associated objects. Like dataframes, lists need

not use a single data storage mode. Unlike dataframes, however, lists can include objects that

are not two-dimensional or with different data classes including character strings (i.e., units of

character objects), multiple matrices and dataframes with varying dimensionality, and even

other lists. The function list() can be used to create lists.

ldata1 <- list(a = c(1, 2, 3), b = "this.is.a.list")
ldata1

$a
[1] 1 2 3

$b
[1] "this.is.a.list"

class(ldata1)

[1] "list"

typeof(ldata1)

[1] "list"

Objects in lists can be called using the $ operator. Here is the character string b from ldata.

ldata1$b

[1] "this.is.a.list"

3All objects from a specific class can also be removed from a workspace. For example, to remove all

dataframes, from a work session one could use: rm(list=ls(all=TRUE)[sapply(mget(ls(all=TRUE)),
class) == "data.frame"])



56 CHAPTER 3. DATA OBJECTS, PACKAGES, AND DATASETS

We note that to create an R-object containing character strings, we need to place quotation

marks around entries.

x <- c("low", "med", "high")
x

[1] "low" "med" "high"

The function str attempts to display the internal structure of an R object. It is extremely useful

for succinctly displaying the contents of complex objects like lists.

str(ldata1)

List of 2
$ a: num [1:3] 1 2 3
$ b: chr "this.is.a.list"

We are told that ldata1 is a list containing two objects: a sequence of numbers from 1 to 3,

and a character string.

The function do.call() is useful for large scale manipulations of data storage objects. For

example, what if you had a list containing multiple dataframes with the same column names

that you wanted to bind together?

ldata2 <- list(df1 = data.frame(lo.temp = c(-1,3,5),
high.temp = c(78, 67, 90)),

df2 = data.frame(lo.temp = c(-4,3,7),
high.temp = c(75, 87, 80)),

df3 = data.frame(lo.temp = c(-0,2),
high.temp = c(70, 80)))

You could do something like:

do.call("rbind",ldata2)

lo.temp high.temp
df1.1 -1 78
df1.2 3 67
df1.3 5 90
df2.1 -4 75
df2.2 3 87
df2.3 7 80
df3.1 0 70
df3.2 2 80

Or what if I wanted to replicate the df3 dataframe from ldata above, by binding it onto the
bottom of itself three times? I could do something like:



3.2. BOOLEAN OPERATIONS 57

do.call("rbind", replicate(3, ldata2$df3, simplify = FALSE))

lo.temp high.temp
1 0 70
2 2 80
3 0 70
4 2 80
5 0 70
6 2 80

Note the use of the function replicate().

3.2 Boolean Operations

Computer operations that dichotomously classify true and false statements are called logical

or Boolean. In R, a Boolean operation will always return one of the values TRUE or FALSE. R
logical operators are listed in Table 3.2.

Table 3.2: Logical (Boolean) operators in R; x, y, and z in columns three and four are R objects.

Operator Operation To ask: We type:

> > Is x greater than y? x > y
>= ≥ Is x greater than or equal to y? x >= y
< < Is x less than y? x < y
<= ≤ Is x less than or equal to y x <= y
== = Is x equal to y? x == y
!= ≠ Is x not equal to y? x != y
& and Do x and y equal z? x & y == z
&& and (control flow) Do x and y equal z? x && y == z
| or Do x or y equal z? x | y == z
|| or (control flow) Do x or y equal z? x || y == z

Note that there are two ways to specify “and” (& and &&), and two ways to specify “or” (| and
||). The longer forms of “and” and “or” evaluate queries from left to right, stopping when

a result is determined. Thus, this form is more appropriate for programming control-flow

operations.

Example 3.3.

For demonstration purposes, here is a simple dataframe:

dframe <- data.frame(
Age = c(18,22,23,21,22,19,18,18,19,21),
Sex = c("M","M","M","M","M","F","F","F","F","F"),
Weight_kg = c(63.5,77.1,86.1,81.6,70.3,49.8,54.4,59.0,65,69)



58 CHAPTER 3. DATA OBJECTS, PACKAGES, AND DATASETS

)

dframe

Age Sex Weight_kg
1 18 M 63.5
2 22 M 77.1
3 23 M 86.1
4 21 M 81.6
5 22 M 70.3
6 19 F 49.8
7 18 F 54.4
8 18 F 59.0
9 19 F 65.0
10 21 F 69.0

The R logical operator for equals is == (Table 3.2). Thus, to identify Age outcomes equal to 21

we type:

with(dframe, Age == 21)

[1] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE

The unary operator for “not” is ! (Table 3.2). Thus, to identify Age outcomes not equal to 21

we could type:

with(dframe, Age != 21)

[1] TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE

Multiple Boolean queries can be made. Here we identify Age data less than 19, or equal to 21.

with(dframe, Age < 19 | Age == 21)

[1] TRUE FALSE FALSE TRUE FALSE FALSE TRUE TRUE FALSE TRUE

Queries can involve multiple variables. For instance, here we identify males less than or equal

to 21 years old that weigh less than 80 kg.

with(dframe, Age <= 21 & Sex == "M", weight < 80)

[1] TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE

�



3.3. TESTING AND COERCING CLASSES 59

3.3 Testing and Coercing Classes

We have already considered functions for identifying the class of an arbitrary R object, foo.

These include class(foo) and attr(foo, "class") (Section 2.3.3). Wehave also considered

approaches for identifying the base type of an object, including typeof(foo) (Section 2.3.4).

This section considers methods for identifying object membership in particular classes, and

coercing an object’s class membership.

3.3.1 Testing

Functions exist to logically test for object membership to major R classes. These functions

generally begin with an .is prefix and include: is.matrix(), is.array(), is.list(),
is.factor(), is.double(), is.integer() is.numeric(), is.character(), and many

others. The Boolean function is.numeric() can be used to test if an object or an object’s

components behave like numbers4.

x <- c(23, 34, 10)
is.numeric(x)

[1] TRUE

is.double(x)

[1] TRUE

Thus, x contains numbers stored with double precision. However,

x <- c("a", "b", 10)
is.numeric(x)

[1] FALSE

Data objects with categorical entries can be created using the function factor(). In statistics

the term “factor” refers to a categorical variable whose categories (factor levels) are likely

replicated as treatments in an experimental design.

x <- factor(c(1,2,3,4))
x

[1] 1 2 3 4
Levels: 1 2 3 4

is.factor(x)

[1] TRUE
4The numeric class is often used as an alias for class double. In fact, as.numeric() is identical to

as.double(), and numeric() is identical to double() (Wickham, 2019).



60 CHAPTER 3. DATA OBJECTS, PACKAGES, AND DATASETS

The R class factor streamlines many analytical processes, including summarization of a

quantitative variable with respect to a factor and specifying interactions of two ormore factors.

Here we see the interaction of levels in xwith levels in another factor, y.

y <- factor(c("a","b","c","d"))
interaction(x, y)

[1] 1.a 2.b 3.c 4.d
16 Levels: 1.a 2.a 3.a 4.a 1.b 2.b 3.b 4.b 1.c 2.c 3.c 4.c 1.d 2.d ... 4.d

Sixteen interactions are possible, although only four actually occur when simultaneously

considering x and y.

To decrease memory usage5, objects of class factor have an unexpected base type:

typeof(x)

[1] "integer"

Despite this designation, and the fact that categories in x are distinguished using numbers, the

entries in x do not have a numerical meaning and cannot be evaluated mathematically.

is.numeric(x)

[1] FALSE

x + 5

Warning in Ops.factor(x, 5): '+' not meaningful for factors

[1] NA NA NA NA

Occasionally an ordering of categorical levels is desirable. For instance, assume that we wish

to apply three different imprecise temperature treatments "low", "med" and "high" in an

experiment with six experimental units. While we do not know the exact temperatures of

these levels, we know that "med" is hotter than "low" and "high" is hotter than "med". To
provide this categorical orderingwe canusefactor(data, ordered = TRUE)or the function
ordered().

x <- factor(c("med","low","high","high","med","low"),
levels = c("low","med","high"),
ordered = TRUE)

x

[1] med low high high med low

5All numeric objects inR are storedwith double-precision, andwill require two adjacent locations in computer

memory (see Ch 12). Numeric objects coerced to be integers (with as.intger()) will be stored with double

precision, although one of the storage locations will not be used. As a result, integers are not conventional double

precision data.



3.3. TESTING AND COERCING CLASSES 61

Levels: low < med < high

is.factor(x)

[1] TRUE

is.ordered(x)

[1] TRUE

The levels argument in factor() specifies the correct ordering of levels.

3.3.1.1 ifelse()

The function ifelse() can be applied to atomic vectors or one dimensional arrays (e.g., rows

or columns) to evaluate a logical argument and provide particular outcomes if the argument is

TRUE or FALSE. The function requires three arguments.

• The first argument, test, gives the logical test to be evaluated.
• The second argument, yes, provides the output if the test is true.
• The third argument, no, provides the output if the test is false.

For instance:

ifelse(dframe$Age < 20, "Young", "Not so young")

[1] "Young" "Not so young" "Not so young" "Not so young"
[5] "Not so young" "Young" "Young" "Young"
[9] "Young" "Not so young"

3.3.1.2 if, else, any, and all

A more generalized approach to providing a condition and then defining the consequences

(often used in functions) uses the commands if and else, potentially in combination with the

functions any() and all(). For instance:

if(any(dframe$Age < 20))"Young" else "Not so Young"

[1] "Young"

and

if(all(dframe$Age < 20))"Young" else "Not so Young"

[1] "Not so Young"

.



62 CHAPTER 3. DATA OBJECTS, PACKAGES, AND DATASETS

3.3.2 Coercion

Objects can be switched from one class to another using coercion functions that begin with

an as. prefix6. Analogues to the testing (.is) functions listed above are: as.matrix(),
as.array(), as.list(), as.factor(), as.double(), as.integer() as.numeric(), and
as.character().

For instance, a non-factor object can be coerced to have class factor with the function

as.factor().

x <- c(23, 34, 10)
is.factor(x)

[1] FALSE

y <- as.factor(x)
is.factor(y)

[1] TRUE

Coercionmay result in removal and addition of attributes. For instance conversion from atomic

vector to matrix below results in the loss of the names attribute.

x <- c(eulers_num = exp(1), log_exp = log(exp(1)), pi = pi)
x

eulers_num log_exp pi
2.7183 1.0000 3.1416

names(x)

[1] "eulers_num" "log_exp" "pi"

y <- as.matrix(x)
names(y)

NULL

Coercionmay also have unexpected results. Here NAs result when attempting to coerce a object

with apparent mixed storage modes to class numeric.

x <- c("a", "b", 10)
as.numeric(x)

Warning: NAs introduced by coercion

[1] NA NA 10
6Coercion can also be implemented using class generating functions described earlier. For instance,

data.frame(matrix(nrow = 2, data = rnorm(4))) converts a 2 × 2matrix into an equivalent dataframe.



3.3. TESTING AND COERCING CLASSES 63

3.3.3 NA

R identifies missing values (empty cells) as NA, which means “not available.” Hence, the R

function to identify missing values is is.na(). For example:

x <- c(2, 3, 1, 2, NA, 3, 2)
is.na(x)

[1] FALSE FALSE FALSE FALSE TRUE FALSE FALSE

Conversely, to identify outcomes that are not missing, I would use the “not” operator to specify

!is.na().

!is.na(x)

[1] TRUE TRUE TRUE TRUE FALSE TRUE TRUE

There are a number of R functions to get rid of missing values. These include na.omit().

na.omit(x)

[1] 2 3 1 2 3 2
attr(,"na.action")
[1] 5
attr(,"class")
[1] "omit"

Wesee thatR dropped themissing observation and then told uswhich observationwas omitted

(observation number 5).

Functions inR often, but not always, have built in capacities to handlemissing data, for instance,

by calling na.omit(). Consider the following dataframe which provides plant percent cover

data for four plant species at two sites. Plant species are identified with four letter codes,

consisting of the first two letters of the Linnaean genus and species names.

field.data <- data.frame(ACMI = c(12, 13), ELSC = c(0, 4), CAEL = c(NA, 2),
CAPA = c(20, 30), TACE = c(0, 2))

row.names(field.data) <- c("site1", "site2")

field.data

ACMI ELSC CAEL CAPA TACE
site1 12 0 NA 20 0
site2 13 4 2 30 2

The function complete.cases() checks for completeness of the data in rows of a data array.

complete.cases(field.data)



64 CHAPTER 3. DATA OBJECTS, PACKAGES, AND DATASETS

[1] FALSE TRUE

If na.omit() is applied in this context, the entire row containing the missing observation will

be dropped.

na.omit(field.data)

ACMI ELSC CAEL CAPA TACE
site2 13 4 2 30 2

Unfortunately, this means that information about the other four species at site one will lost.

Thus, it is generally more rational to remove NA values while retaining non-missing values. For

instance, many statistical functions have to capacity to base summaries on non-NA data.

mean(field.data[1,], na.rm = T)

Warning in mean.default(field.data[1, ], na.rm = T): argument is not
numeric or logical: returning NA

[1] NA

3.3.4 NaN

ThedesignationNaN is associatedwith the current conventions of the IEEE754-2008arithmetic

used by R. It means “not a number.” Mathematical operations which produce NaN include:

0/0

[1] NaN

Inf-Inf

[1] NaN

sin(Inf)

Warning in sin(Inf): NaNs produced

[1] NaN

3.3.5 NULL

In object oriented programming, a null object has no referenced value or has a defined neutral

behavior (Wikipedia, 2023b). Occasionally one may wish to specify that an R object is NULL.
For example, a NULL object can be included as an argument in a function without requiring

that it has a particular value or meaning. As with NA and NaN, the NULL specification is easy.



3.4. ACCESSING AND SUBSETTING DATAWITH [] 65

x <- NULL

It should be emphasized that R-objects or elements within objects that are NA, NaN or NULL
cannot be identified with the Boolean operators == or !=. For instance:

x == NULL

logical(0)

y <- NA

y == NA

[1] NA

Instead one should use is.na(), is.nan() or is.null() to identify NA, NaN or NULL compo-

nents, respectively.

is.null(x)

[1] TRUE

!is.null(x)

[1] FALSE

is.na(y)

[1] TRUE

!is.na(y)

[1] FALSE

3.4 Accessing and Subsetting Data With []

One can subset data storage objects using square bracket operators, i.e., [], along with a

variety of functions7. Because of their simplicity, I focus on square brackets for subsetting here.

Gaining skills with square brackets will greatly enhance your ability to manipulate datasets

in R. As toy datasets here are an atomic vector (with a names attribute), a matrix, a three

dimensional array, a dataframe, and a list:

vdat <- c(a = 1, b = 2, c = 3)
vdat

7For instance, subset(), split(), and dplyr::filter().



66 CHAPTER 3. DATA OBJECTS, PACKAGES, AND DATASETS

a b c
1 2 3

mdat <- matrix(ncol = 2, nrow = 2, data = c(1, 2, 3, 4))
mdat

[,1] [,2]
[1,] 1 3
[2,] 2 4

adat <- array(dim = c(2, 2, 2), data = c(1, 2, 3, 4, 5, 6, 7, 8))
adat

, , 1

[,1] [,2]
[1,] 1 3
[2,] 2 4

, , 2

[,1] [,2]
[1,] 5 7
[2,] 6 8

ddat <- data.frame(numeric = c(1, 2, 3), non.numeric = c("a", "b", "c"))
ddat

numeric non.numeric
1 1 a
2 2 b
3 3 c

ldat <- list(element1 = c(1, 2, 3), element2 = "this.is.a.list")
ldat

$element1
[1] 1 2 3

$element2
[1] "this.is.a.list"

To obtain the 𝑖th component from an atomic vector, matrix, array, dataframe or list named foo
we would specify foo[i]. For instance, here is the first component of our toy data objects:

vdat[1]



3.4. ACCESSING AND SUBSETTING DATAWITH [] 67

a
1

mdat[1]

[1] 1

adat[1]

[1] 1

ddat[1]

numeric
1 1
2 2
3 3

ldat[1]

$element1
[1] 1 2 3

Importantly, dataframes and lists view their 𝑖th element as the 𝑖th column and the 𝑖th list

element, respectively.

We can also apply double square brackets, i.e., [[]] to list-type objects, i.e., atomic vectors and

explicit lists, with similar results. Note, however, that the data subsets are nowmissing their

name attributes.

vdat[[1]]

[1] 1

ldat[[1]]

[1] 1 2 3

If a data storage object has a names attribute, then a name can be placed in square brackets to

obtain corresponding data.

ddat["numeric"]

numeric
1 1
2 2
3 3



68 CHAPTER 3. DATA OBJECTS, PACKAGES, AND DATASETS

The advantage of square brackets over $ in this an application is that several components can

be specified simultaneously using the former approach:

ddat[c("non.numeric","numeric")]

non.numeric numeric
1 a 1
2 b 2
3 c 3

If foo has a row× column structure, i.e., a matrix, array, or dataframe, we could obtain the 𝑖th
column from foo using foo[,i] (or foo[[i]]) and the 𝑗th row from foo using foo[j,]. For
instance, here is the second column from mdat, and the first row from ddat.

mdat[,2]

[1] 3 4

ddat[1,]

numeric non.numeric
1 1 a

The element from foo corresponding to row j and column i can be accessed using: foo[j, i],
or foo[,i][j], or foo[j,][i].

mdat[1,2]; mdat[,2][1]; mdat[1,][2] # 1st element from 2nd column

[1] 3

[1] 3

[1] 3

Arrays may require more than two indices. For instance, for a three dimensional array, foo,
the specification foo[,j,i]will return the entirety of the 𝑗th column in the 𝑖th component of

the outermost dimension of foo, whereas foo[k,j,i]will return the 𝑘th element from the

𝑗th column in the 𝑖th component of the outermost dimension of foo.

adat[,2,1]

[1] 3 4

adat[1,2,1]

[1] 3

adat[2,2,1]



3.4. ACCESSING AND SUBSETTING DATAWITH [] 69

[1] 4

Ranges or particular subsets of elements from a data storage object can also be selected. For

instance, here I access rows two and three of ddat:

ddat[2:3,] # note the position of the comma

numeric non.numeric
2 2 b
3 3 c

I can drop data object components by using negative integers in square brackets. Here I obtain

an identical result to the example above by dropping row one from ddat:

ddat[-1,] # drop row one

numeric non.numeric
2 2 b
3 3 c

Here I obtain ddat rows one and three in two different ways:

ddat[c(1,3),]

numeric non.numeric
1 1 a
3 3 c

ddat[-2,]

numeric non.numeric
1 1 a
3 3 c

Square braces can also be used to rearrange data components:

ddat[c(3,1,2),]

numeric non.numeric
3 3 c
1 1 a
2 2 b

Duplicate components:

ldat[c(2,2)]

$element2
[1] "this.is.a.list"



70 CHAPTER 3. DATA OBJECTS, PACKAGES, AND DATASETS

$element2
[1] "this.is.a.list"

Or even replace data components:

ddat[,2] <- c("d","e","f")
ddat

numeric non.numeric
1 1 d
2 2 e
3 3 f

3.4.1 Subsetting a Factor

Importantly, the factor level structure of a factorwill remain intact even if one or more of the

levels are entirely removed.

fdat <- as.factor(ddat[,2])
fdat

[1] d e f
Levels: d e f

fdat[-1]

[1] e f
Levels: d e f

Note that the level a remains a characteristic of fdat, even though the cell containing the

lone observation of awas removed from the dataset. This outcome is allowed because it is

desirable for certain analytical situations (e.g, summarizations that acknowledge missing data

for some levels). To remove levels that no longer occur in a factor, we can use the function

droplevels().

droplevels(fdat[-1])

[1] e f
Levels: e f

3.4.2 Subsetting with Boolean Operators

Boolean (TRUE or FALSE) outcomes can be used in combination with square brackets to subset

data. Consider the dataframe used earlier to demonstrate logical commands.



3.4. ACCESSING AND SUBSETTING DATAWITH [] 71

dframe <- data.frame(
Age = c(18,22,23,21,22,19,18,18,19,21),
Sex = c("M","M","M","M","M","F","F","F","F","F"),
Weight_kg = c(63.5,77.1,86.1,81.6,70.3,49.8,54.4,59.0,65,69)
)

Here we extract Age outcomes less than or equal to 21.

ageTF <- dframe$Age <= 21
dframe$Age[ageTF]

[1] 18 21 19 18 18 19 21

We could also use this information to obtain entire rows of the dataframe.

dframe[ageTF,]

Age Sex Weight_kg
1 18 M 63.5
4 21 M 81.6
6 19 F 49.8
7 18 F 54.4
8 18 F 59.0
9 19 F 65.0
10 21 F 69.0

3.4.3 When Subset Is Larger Than Underlying Data

R allows one to make a data subset larger than underlying data itself, although this results in

the generation of filler NAs. Consider the following example:

x <- c(-2, 3, 4, 6, 45)

The atomic vector x has length five. If I ask for a subset of length seven, I get:

x[1:7]

[1] -2 3 4 6 45 NA NA

3.4.4 Subsetting with upper.tri(), lower.tri(), and diag()

We can use square brackets alongside the functions upper.tri(), lower.tri(), and diag()
to examine the upper triangle, lower triangle, and diagonal parts of a matrix, respectively.

mat <- matrix(ncol = 3, nrow = 3, data = c(1, 2, 3, 2, 4, 3, 5, 1, 4))
mat



72 CHAPTER 3. DATA OBJECTS, PACKAGES, AND DATASETS

[,1] [,2] [,3]
[1,] 1 2 5
[2,] 2 4 1
[3,] 3 3 4

mat[upper.tri(mat)]

[1] 2 5 1

mat[lower.tri(mat)]

[1] 2 3 3

diag(mat)

[1] 1 4 4

Note that upper.tri() and lower.tri() are used identify the appropriate triangle in the

object mat. Subsetting is then accomplished using square brackets.

3.5 Packages

AnR package contains a set of related functions, documentation, and (often) data files that have

been bundled together. The so-called R-distribution packages are included with a conventional

download of R (Table 3.3). These packages are directly controlled by the R core development

team and are extremely well-vetted and trustworthy.

Packages in Table 3.4 constitute the R-recommended packages. These are not necessarily

controlled by the R core development team, but are also extremely useful, well-tested, and

stable, and like the R-distribution packages, are included in conventional downloads of R.

Aside from distribution and recommended packages, there are a large number of contributed

packages that have been created by R-users (> 20000 as of 9/12/2023). Table 3.5 lists a few.

3.5.1 Package Installation

Contributed packages can be installed from CRAN (the Comprehensive R Archive Network).

To do this, one can go to Packages>Install package(s) on the R-GUI toolbar, and choose a

nearby CRANmirror site to minimize download time (non-Unix only). Once a mirror site is

selected, the packages available at the site will appear. One can simply click on the desired

packages to install them. Packages can also be downloaded directly from the command line

using install.packages("package name"). Thus, to install the package vegan (see Table
3.5), I would simply type:

install.packages("vegan")



3.5. PACKAGES 73

If local web access is not available, packages can be installed as compressed (.zip, .tar) files

which can then be placed manually on a workstation by inserting the package files into the

library folder within the top level R directory, or into a path-defined R library folder in a user

directory.

The installation pathway for contributed packages can be identified using .libPath().

.libPaths()

[1] "C:/Users/ahoken/AppData/Local/R/win-library/4.4"
[2] "C:/Program Files/R/R-4.4.2/library"

This process can be facilitated in RStudio via the plots and files (see Section 2.9).

Several functions exist for updating packages and for comparing currently installed ver-

sions packages with their latest versions on CRAN or other repositories. The function

old.packages() indicates which currently installed packages which have a (suitable) later

version. Here are a few of the packages I have installed that have later versions.

head(old.packages(repos = "https://cloud.r-project.org"))[,c(1,3,4,5)]

Package Installed Built ReposVer
ape "ape" "5.8" "4.4.1" "5.8-1"
askpass "askpass" "1.2.0" "4.4.1" "1.2.1"
bit "bit" "4.0.5" "4.4.1" "4.5.0.1"
bit64 "bit64" "4.0.5" "4.4.1" "4.5.2"
bookdown "bookdown" "0.39" "4.4.0" "0.41"
broom "broom" "1.0.6" "4.4.1" "1.0.7"

The function update.packages()will identify, and offer to download and install later versions

of installed packages.

3.5.2 Loading Packages

Once a contributed package is installed on a computer it never needs to be re-installed. How-

ever, for use in an R session, recommended packages, and installed contributed packages will

need to be loaded. This can be done using the library() function, or point and click tools if

one is using RStudio. For example, to load the installed contributed vegan package, I would

type:

library(vegan)

We see that two other packages are loaded when we load vegan: permute and lattice.

To detach vegan from the global environment, I would type:

detach(package:vegan)



74 CHAPTER 3. DATA OBJECTS, PACKAGES, AND DATASETS

We can check if a specific package is loaded using the function .packages(). Most of the R

distribution packages are loaded (by default) upon opening a session. Exceptions include

compiler, grid, parallel, splines, stats4, and tools.

bpack <- c("base", "compiler", "datasets", "grDevices", "graphics",
"grid", "methods", "parallel", "splines", "stats", "stats4",
"tcltk", "tools", "translations", "utils")

sapply(bpack, function(x) (x %in% .packages()))

base compiler datasets grDevices graphics
TRUE FALSE TRUE TRUE TRUE
grid methods parallel splines stats

FALSE TRUE FALSE FALSE TRUE
stats4 tcltk tools translations utils
FALSE TRUE FALSE FALSE TRUE

The function sapply(), which allows application of a function to each element in a vector or

list, is formally introduced in Section 4.1.1.

The package vegan is no longer loaded because we applied detach(package:vegan) earlier.

"vegan" %in% .packages()

[1] FALSE

We can get a summary of information about a session, including details about the version of

R being used, the underlying computer platform, and the loaded packages with the function

sessionInfo().

si <- sessionInfo()
si$R.version$version.string

[1] "R version 4.4.2 (2024-10-31 ucrt)"

si$running

[1] "Windows 10 x64 (build 17134)"

head(names(si$loadedOnly))

[1] "splines" "later" "confintr" "lifecycle" "rstatix" "MASS"

This information is important to include when reporting issues to package maintainers.

Once a package is installed its functions can generally be accessed using the double colon

metacharacter, ::, even if the package is not actually loaded. For instance, the function

vegan::diversity()will allow access to the function diversity() from vegan, even when

vegan is not loaded.



3.5. PACKAGES 75

head(vegan::diversity)[1:2]

[1] function (x, index = "shannon", groups, equalize.groups = FALSE,
[2] MARGIN = 1, base = exp(1))

The triple colonmetacharacter, :::, can be used to access internal package functions. These

functions, however, are generally kept internal for good reason, and probably shouldn’t be

used outside of the context of the rest of the package.

3.5.3 Other Package Repositories

Aside from CRAN, there are currently three other extensive repositories of R packages. First,

the Bioconductor project (http://www.bioconductor.org/packages/release/Software/html)

contains a large number of packages for the analysis of data from current and emerging

biological assays. Bioconductor packages are generally not stored at CRAN. Packages can be

downloaded from bioconductor using an R script called biocLite. To access the script and
download the package RCytoscape from Biocondctor, I could type:

source("http://bioconductor.org/biocLite.R")
biocLite("RCytoscape")

Second, the Posit Package Manager (formerly the RStudio Package Manager) provides a repos-

itory interface for R packages from CRAN, Bioconductor, and packages for the Python system

(see Section 9.5). Third, R-forge (http://r-forge.r-project.org/) contains releases of packages

that have not yet been implemented into CRAN, and other miscellaneous code. Bioconductor,

Posit, and R-forge can be specified as repositories from Packages>Select Repositories in
the R-GUI (non-Unix only). Other informal R package and code repositories currently include

GitHub and Zenodo.

http://www.bioconductor.org/packages/release/Software/html
http://r-forge.r-project.org/
https://github.com/
https://zenodo.org/


7
6

C
H
A
P
T
E
R
3
.
D
A
T
A
O
B
JE
C
T
S
,P
A
C
K
A
G
E
S
,A

N
D
D
A
T
A
S
E
T
S

Table 3.3: The R-distribution packages.

Package Maintainer Topic(s) addressed by package Author/Citation

base R Core Team Base R functions R Core Team (2023)

compiler R Core Team R byte code compiler R Core Team (2023)

datasets R Core Team Base R datasets R Core Team (2023)

grDevices R Core Team Devices for base and grid graphics R Core Team (2023)

graphics R Core Team R functions for base graphics R Core Team (2023)

grid R Core Team Grid graphics layout capabilities R Core Team (2023)

methods R Core Team Formal methods and classes for R objects R Core Team (2023)

parallel R Core Team Support for parallel computation R Core Team (2023)

splines R Core Team Regression spline functions and classes R Core Team (2023)

stats R Core Team R statistical functions R Core Team (2023)

stats4 R Core Team Statistical functions with S4 classes R Core Team (2023)

tcltk R Core Team Language bindings to Tcl/Tk R Core Team (2023)

tools R Core Team Tools forpackage development/administration R Core Team (2023)

utils R Core Team R utility functions R Core Team (2023)



3
.5
.
P
A
C
K
A
G
E
S

7
7

Table 3.4: The R-recommended packages.

Package Maintainer Topic(s) addressed by package Author/Citation

KernSmooth B. Ripley Kernel smoothing Wand (2023)

MASS B. Ripley Important statistical methods Venables and Ripley (2002)

Matrix M. Maechler Classes and methods for matrices Bates et al. (2023)

boot B. Ripley Bootstrapping Canty and Ripley (2022)

class B. Ripley Classification Venables and Ripley (2002)

cluster M. Maechler Cluster analysis Maechler et al. (2022)

codetools S. Wood Code analysis tools Tierney (2023)

foreign R core team Data stored by non-R software R Core Team (2023)

lattice D. Sarkar Lattice graphics Sarkar (2008)

mgcv S. Wood Generalized Additive Models Wood (2011, 2017)

nlme R core team Linear and non-linear mixed effect models Pinheiro and Bates (2000)

nnet B. Ripley Feed-forward neural networks Venables and Ripley (2002)

rpart B. Ripley Partitioning and regression trees Venables and Ripley (2002)

spatial B. Ripley Kriging and point pattern analysis Venables and Ripley (2002)

Table 3.5: Useful contributed R packages.

Package Maintainer Topic(s) addressed by package Author/Citation

asbio K. Aho Stats pedagogy and applied stats Aho (2023)

car J. Fox General linear models Fox and Weisberg (2019)

coin T. Hothorn Non-parametric analysis Hothorn et al. (2006, 2008)

ggplot2 H. Wickham Tidyverse grid graphics Wickham (2016)

lme4 B. Bolker Linear mixed-effects models Bates et al. (2015)

plotrix J. Lemonetal. Helpful graphical ideas Lemon (2006)

spdep R. Bivand Spatial analysis Bivand et al. (2013); Pebesma and Bivand (2023)

tidyverse H. Wickham Data science under the tidyverse Wickham et al. (2019)

vegan J. Oksanen Multivariate and ecological analysis Oksanen et al. (2022)



78 CHAPTER 3. DATA OBJECTS, PACKAGES, AND DATASETS

3.5.4 Accessing Package Information

Important information concerning apackage canbeobtained from thepackageDescription()
family of functions. Here is the version of the R contributed package asbio on my work station:

packageVersion("asbio")

[1] '1.10'

Here is the version of R used to build the installed version of asbio, and the package’s build

date:

packageDescription("asbio", fields="Built")

[1] "R 4.4.2; ; 2024-12-23 20:57:21 UTC; windows"

3.5.5 Accessing Datasets in R-packages

The command:

data()

results in a listing of a datasets available in a session from within R packages loaded in a

particular R session. Whereas the code:

data(package = .packages(all.available = TRUE))

results in a listing of a datasets available in a session from within installed R packages.

If one is interested in datasets from a particular package, for instance the package datasets,

one could type:

data(package = "datasets")

The dataset Loblolly in the datasets package contains height, age, and seed type records for

a sample of loblolly pine trees (Pinus taeda). To access the data we can type:8

data(Loblolly)

The data are now contained in a dataframe (called Loblolly) that we can manipulate and

analyze.

8This actually isn’t necessary since datasets in the package dataset default to being read into an R-session

automatically. This step will be necessary, however, in order to obtain datasets from packages that are not lazy

loaded (Ch 10).



3.5. PACKAGES 79

class(Loblolly)

[1] "nfnGroupedData" "nfGroupedData" "groupedData" "data.frame"

Note that there are three classes (nfnGroupedData, nfGroupedData, groupedData) in ad-

dition to dataframe. These classes allow recognition of the nested structure of the age and
Seed variables (defined to height is a function of age in Seed), and facilitates the analysis of

the data using mixed effect model algorithms in the package nlme. We can get a general feel

for the Loblolly dataset by accessing the first few rows using the function head():

head(Loblolly, 5)

Grouped Data: height ~ age | Seed
height age Seed

1 4.51 3 301
15 10.89 5 301
29 28.72 10 301
43 41.74 15 301
57 52.70 20 301

The function summary() provides the mean and a conventional five number summary (mini-

mum, 1st quartile, median, 3rd quartile, maximum) of both quantitative variables (height and
age) and a count of the number of observations (six) in each level of the categorical variable

Seed.

summary(Loblolly)

height age Seed
Min. : 3.46 Min. : 3.0 329 : 6
1st Qu.:10.47 1st Qu.: 5.0 327 : 6
Median :34.00 Median :12.5 325 : 6
Mean :32.36 Mean :13.0 307 : 6
3rd Qu.:51.36 3rd Qu.:20.0 331 : 6
Max. :64.10 Max. :25.0 311 : 6

(Other):48

R provides a spreadsheet-style data editor if one types fix(x), when x is a dataframe or a

two dimensional array. For instance, the command fix(loblolly)will open the Loblolly
pine dataframe in the data editor (Figure 3.1). When x is a function or character string, then

a script editor is opened containing x. The data editor has limited flexibility compared to

software whose main interface is a spreadsheet, and whose primary purpose is data entry

and manipulation, e.g., Microsoft Excelr. Changes made to an object using fix() will only

be maintained for the current work session. They will not permanently alter objects brought

in remotely to a session. The function View(x) (RStudio only) will provide a non-editable

spreadsheet representation of a dataframe or numeric array.



80 CHAPTER 3. DATA OBJECTS, PACKAGES, AND DATASETS

Figure 3.1: The default R spreadsheet editor.

3.6 Facilitating Command Line Data Entry

Command line data entry is made easier with with several R functions. The function scan()
speeds up data entry because a prompt is given for each data point, and separators are created

by the function itself. Data entries can be separated using the space bar or line breaks. The

scan() function will be terminated by a additional blank line or an end of file (EOF) signal.

These will be Ctrl+D in Unix-alike operating systems and Ctrl+Z in Windows.

Below I enter the numbers 1, 2, and 3 as datapoints, separated by spaces, and end data entry

using an additional line break. The data are saved as the object a.

a <- scan()
1: 1 2 3
4:
Read 3 items

Sequences can be generated quickly in R using the : operator

1:10

[1] 1 2 3 4 5 6 7 8 9 10

or the function seq(), which allows additional options:

seq(1, 10)

[1] 1 2 3 4 5 6 7 8 9 10

seq(1, 10, by = 2) # 1 to 10 by two

[1] 1 3 5 7 9



3.7. IMPORTING DATA INTO R 81

seq(1, 10, length = 4) # 1 to 10 in four evenly spaced points

[1] 1 4 7 10

Entries can be repeatedwith the function rep(). For example, to repeat the sequence 1 through

5, five times, I could type:

rep(c(1:5), 5)

[1] 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Note that the first argument in rep(), defines the thing we want to repeat and the second

argument, 5, specifies the number of repetitions. I can use the argument each to repeat

individual elements a particular number of times.

rep(c(1:5), each = 2)

[1] 1 1 2 2 3 3 4 4 5 5

We can use seq() and rep() simultaneously to create complex sequences. For instance, to

repeat the sequence 1,3,5,7,9,11,13,15,17,19, three times, we could type:

rep(seq(1, 20, by = 2), 3)

[1] 1 3 5 7 9 11 13 15 17 19 1 3 5 7 9 11 13 15 17 19 1 3 5
[24] 7 9 11 13 15 17 19

3.7 Importing Data Into R

While it is possible to enter data into R at the command line, this will normally be inadvisable

except for small datasets. In general it will be much easier to import data. R can read data

from many different kinds of formats including .txt, and .csv (comma separator) files, and

files with space, tab, and carriage return datum separators. I generally organize my datasets

using Excelr or some other spreadsheet program (althoughR can handle much larger datasets

than these platforms), then save them as .csv files. I then import the .csv files into R using the

read.table(), read.csv(), or scan() functions. The function load() can be used to import

data files in .rda data formats, or other R objects. Datasets read into Rwill generally be of class

dataframe and data storage mode list.

3.7.1 Import Using read.table(), read.csv(), and scan()

The read.table() function can import data organized under a wide range of formats. It’s

first three arguments are very important.

• file defines the name of the file and directory hierarchy which the data are to be read

from.



82 CHAPTER 3. DATA OBJECTS, PACKAGES, AND DATASETS

• header is a a logical (TRUE or FALSE) value indicating whether file contains column

names as its first line.

• sep refers to the type of data separator used for columns. Comma separated files use

commas to separate data entries. Thus, in this case sep = ",". Tab separators are

specified as "\t". Space separators are specified as spaces, specified as simply " ".

Other useful read.table() arguments include row.names, header, and na.strings. The
specification row.names = 1 indicates that the first column in the imported dataset contains

row names. The specification header = TRUE, the default setting, indicates that the first row
of data contains column names. The argument na.strings = "." indicates that missing

values in the imported dataset are designated with periods. By default na.strings = NA.

As an example of read.table() usage, assume that I want to import a .csv file called veg.csv
located in folder called veg_data, in my working directory. The first row of veg.csv contains
columnnames, while the first column contains rownames. Missing data in the file are indicated

with periods. I would type:

read.table("veg_data/veg.csv", sep = ",", header = TRUE, row.names
= 1, na.strings = ".")

As before, note that as a legacy of its development under Unix, R locates files in directories

using forward slashes (or doubled backslashes) rather than single Windows backslashes.

The read.csv() function assumes data are in a .csv format. Because the argument sep is

unnecessary, this results in a simpler code statement.

read.csv("veg_data\\veg.csv", header = TRUE, row.names
= 1, na.strings = ".")

The function scan() can read in data from an essentially unlimited number of formats, and

is extremely flexible with respect to character fields and storage modes of numeric data In

addition to arguments used by read.table(), scan() has the arguments

• whatwhich describes the storage mode of data e.g., "logical", "integer", etc., or if
what is a list, components of variables including column names (see below), and

• decwhich describes the decimal point character (European scientists and journals often

use commas).

Assume that veg_data/veg.csv has a column of species names, called species, that will

serve as the dataframe’s row names, and 3 columns of numeric data, named site1, site2,
and site3. We would read the data in with scan using:

scan("veg.csv", what = list(species = "", site1 = 0, site2 = 0, site3 = 0),
na.strings = ".")

The empty string species = "" in the list comprising the argument what, indicates that
species contains character data. Stating that the remaining variables equal 0, or any other

number, indicates that they contain numeric data.



3.7. IMPORTING DATA INTO R 83

The easiest way to import data, if the directory structure is unknown or complex, is to use

read.csv() or read.table(), with the file.choose() function as the file argument. For

instance, by typing:

df <- read.csv(file.choose())

We can now browse for a .csv files to open that will, following import, be a dataframe with the

name df. Other arguments (e.g., header, row.names) will need to be used, when appropriate,

to import the file correctly.

Occasionally strange characters, e.g., ï.., may appear in front of the first header name when

reading in files created in Excelr or other Microsoft applications. This is due to the addition of

Byte Order Mark (BOM) characters which indicate, among other things, the Unicode character

encoding of the file. These characters can generally be eliminated by using the argument

fileEncoding="UTF-8-BOM" in read.table(), read.csv(), or scan().

3.7.2 Import Using RStudio

RStudio allows direct menu-driven import of file types from a number of spreadsheet and sta-

tistical packages including Excelr, SPSSr, SASr, and Statar by going to File>Import Dataset.

We note, however, that restrictions may exist, which may not be present for read.table()
and read.csv(). These are summarized in Table 3.6.

Table 3.6: Data import options in RStudio by data storage file type.

CSV or Text Excelr SASr, SPSSr, Statar

Import from file system or URL X X X

Change column data types X X

Skip or include columns X X X

Rename dataset X X

Skip the first n rows X X

Use header row for column names X

Trim spaces in names X

Change column delimiter X

Encodingselection X

Select quote identifiers X

Select escape identifiers X

Select comment identifiers X

Select NA identifiers X X

Specify model file X

3.7.3 Final Considerations

It is generally recommended that datasets imported and used by R be smaller than 25% of the

physical memory of the computer. For instance, they should use less than 8 GB on a computer



84 CHAPTER 3. DATA OBJECTS, PACKAGES, AND DATASETS

with 32 GB of RAM. R can handle extremely large datasets, i.e.> 10 GB, and> 1.2 × 1010 rows.
In this case, however, specific R packages can be used to aid in efficient data handling. Parallel

computing and workstation modifications may allow even greater efficiency. The actual upper

physical limit for an R dataframe is 2 × 1031 − 1 elements. Note that this exceeds Excelr by

31 orders of magnitude (Excel 2019 worksheets can handle approximately 1.7 × 1010 cell
elements). R also allows interfacing with a number relational database storage platforms.

These include open source entities that express queries in SQL (Structured Query Language).

For more information see Chambers (2008, pg 178) and Adler (2010, pg 157).

Exercises

1. Create the following data structures:

(a) An atomic vector object with the numeric entries 1,2,3,4.
(b) A matrix object with two rows and two columns with the numeric entries 1,2,3,4.
(c) A dataframe object with two columns; one column containing the numeric entries

1,2,3,4, and one column containing the character entries "a","b","c","d".
(d) A list containing the objects created in (b) and (c).

(e) Using class(), identify the class and the data storage mode for the objects created

in problems a-d. Discuss the characteristics of the identified classes.

2. Assume that you have developed an R algorithm that saves hourly stream temperature

sensor outputs greater than 20o from each day as separate dataframes and places them

into a list container, because some days may have several points exceeding the threshold

and some days may have none. Complete the following based on the list hi.temps given
below:

(a) Combine the dataframes in hi.temps into a single dataframe using do.call().
(b) Create a dataframe consisting of 10 sets of repeated measures from the dataframe

hi.temps$day2 using do.call().

hi.temps <- list(day1 = data.frame(time = c(), temp = c()),
day2 = data.frame(time = c(15,16),

temp = c(21.1,22.2)),
day3 = data.frame(time = c(14,15,16),

temp = c(21.3,20.2,21.5)))

3. Given the dataframe boo below, provide solutions to the following questions:

(a) Identify heights that are less than or equal to 80 inches.

(b) Identify heights that are more than 80 inches.

(c) Identify females (i.e. F) greater than or equal to 59 inches but less 63 inches.

(d) Subset rows of boo to only contain only data for males (i.e. M) greater than or equal

to 75 inches tall.

(e) Find the mean weight of males who are 75 or 76 inches tall.

(f) Use ifelse() or if() to classify heights equal to 60 inches as "small", and heights
greater than or equal to 60 inches as "tall".



3.7. IMPORTING DATA INTO R 85

boo <- data.frame(height.in = c(70, 76, 72, 73, 81, 66, 69, 75,
80, 81, 60, 64, 59, 61, 66, 63,
59, 58, 67, 59),

weight.lbs = c(160, 185, 180, 186, 200, 156,
163, 178, 186, 189, 140, 156,
136, 141, 158, 154, 135, 120,
145, 117),

sex = c(rep("M", 10), rep("F", 10)))

4. Create x <- NA, y <- NaN, and z <- NULL.
(a) Test for the class of x using x == NA and is.na(x) and discuss the results.

(b) Test for the class of y using y == NaN and is.nan(y) and discuss the results.

(c) Test for the class of z using z == NULL and is.null(z) and discuss the results.

(d) Discuss NA, NaN, and NULL designations what are these classes used for and what

do they represent?

5. For the following questions, use data from Table 3.7 below.

(a) Write the data into an R dataframe called plant. Use the functions seq() and

rep() to help.
(b) Use names() to find the names of the variables.

(c) Access the first row of data using square brackets.

(d) Access the third column of data using square brackets.

(e) Access rows three through five using square brackets.

(f) Access all rows except rows three, five and seven using square brackets.

(g) Access the fourth element from the third column using square brackets.

(h) Apply na.omit() to the dataframe and discuss the consequences.

(i) Create a copy of plant called plant2. Using square brackets, replace the 7th item

in the 2nd column in plant2, an NA value, with the value 12.1.
(j) Switch the locations of columns two and three in plant2 using square brackets.
(k) Export the plant2 dataframe to your working directory.

(l) Convert the plant2 dataframe into a matrix using the function as.matrix. Discuss
the consequences.

6. Let:

𝐴 = [2 −3
1 0 ] and 𝑏 = [15]

Perform the following operations using R:

(a) 𝐴𝑏
(b) 𝑏𝐴
(c) 𝑑𝑒𝑡(𝐴)
(d) 𝐴−1

(e) 𝐴′

7. We can solve systems of linear equations using matrix algebra under the framework

𝐴𝑥 = 𝑏, and (thus) 𝐴−1𝑏 = 𝑥. In this notation 𝐴 contains the coefficients from a

series of linear equations (by row), 𝑏 is a vector of solutions given in the individuals



86 CHAPTER 3. DATA OBJECTS, PACKAGES, AND DATASETS

Table 3.7: Data for Question 5.

Plant height (dm) Soil N (%) Water index (1-10) Management type

22.3 12 1 A

21 12.5 2 A

24.7 14.3 3 B

25 14.2 4 B

26.3 15 5 C

22 14 6 C

31 7 D

32 15 8 D

34 13.3 9 E

42 15.2 10 E

28.9 13.6 1 A

33.3 14.7 2 A

35.2 14.3 3 B

36.7 16.1 4 B

34.4 15.8 5 C

33.2 15.3 6 C

35 14 7 D

41 14.1 8 D

43 16.3 9 E

44 16.5 10 E

equations, and 𝑥 is a vector of solutions sought in the system of models. Thus, for the

linear equations:

𝑥 + 𝑦 = 2
−𝑥 + 3𝑦 = 4

we have:

𝐴 = [ 1 1
−1 3] ,𝑥 = [𝑥𝑦] , and 𝑏 = [24] .

Thus, we have

𝐴−1𝑏 = 𝑥 = [1/23/2] .

Given this framework, solve the system of equations below with linear algebra using R.



3.7. IMPORTING DATA INTO R 87

3𝑥 + 2𝑦 − 𝑧 = 1
2𝑥 − 2𝑦 + 4𝑧 = −2

−𝑥 + 0.5𝑦 − 𝑧 = 0

8. Complete the following exercises concerning the R contributed package asbio:

(a) Install9 and load the package asbio for the current work session.

(b) Access the help file for bplot() (a function in asbio).

(c) Load the dataset fly.sex from asbio.

(d) Obtain documentation for the dataset fly.sex and describe the dataset variables.

(e) Access the column longevity in fly.sex using the function with().

9. Create .csv and .txt datasets, place them in your working directory, and read them into R.

9Installation of packages while knitting of RMarkdown or Sweave R code chunks is not allowed. Instead, one

should install packages from the console. Required packages can (and should) be loaded while knitting once they

are installed.



88 CHAPTER 3. DATA OBJECTS, PACKAGES, AND DATASETS



Chapter 4

Basic Data Management

“I think, therefore I R.”

-William B. King, Psychologist and R enthusiast

An important characteristic ofR is its capacity to efficientlymanage and analyze large, complex,

datasets. In this chapter I list a few functions and approaches useful for data management in

base R. Data management considerations for the tidyverse are given in Chapter 5.

4.1 Operations on Arrays, Lists and Vectors

Operators can be applied individually to every row or column of an array, or every component

of a list or atomic vector using a number of time saving methods.

4.1.1 The apply Family of Functions

4.1.1.1 apply()

Operations can be performed quickly on rows and columns of two dimensional arrays with

the function apply(). The function requires three arguments.

• The first argument, X, specifies an array to be analyzed.

• The second argument, MARGIN, connotes whether rows or columns are to be analyzed.

MARGIN = 1 indicates rows, MARGIN = 2 indicates columns, whereas MARGIN = c(1,
2) indicates rows and columns.

• The third argument, FUN, defines a function to be applied to the margins of the object in

the first argument.

Example 4.1.

Consider the asbio::bats dataset which contains forearm length data, in millimeters, for

northern myotis bats (Myotis septentrionalis), along with corresponding bat ages in in days.

89



90 CHAPTER 4. BASIC DATA MANAGEMENT

library(asbio)
data(bats)
head(bats)

days forearm.length
1 1 10.5
2 1 11.0
3 1 12.3
4 1 13.7
5 1 14.2
6 1 14.8

Here we obtain minimum values for the days and forearm.length columns.

apply(bats, 2, min)

days forearm.length
1.0 10.5

It is straightforward to change the third argument in apply() to obtain different summaries,

like the mean.

apply(bats, 2, mean)

days forearm.length
13.579 23.603

or the standard deviation

apply(bats, 2, sd)

days forearm.length
12.4610 8.4347

Several summary statistical functions exist for numerical arrays that can be used in some

instances in the place of apply(). These include rowMeans() and colMeans()which give the

sample means of specified rows and columns, respectively, and rowSums() and colSums()
which give the sums of specified rows and columns, respectively. For instance:

colMeans(bats)

days forearm.length
13.579 23.603

�



4.1. OPERATIONS ON ARRAYS, LISTS AND VECTORS 91

4.1.1.2 lapply()

The function lapply() allows one to sweep functions through list components. It has two

main arguments:

• The first argument, X, specifies a list to be analyzed.
• The second argument, FUN, defines a function to be applied to each element in X.

Example 4.2.

Consider the following simple list, whose three components have different lengths.

x <- list(a = 1:8, norm.obs = rnorm(10),
logic = c(TRUE, TRUE, FALSE, FALSE))

x

$a
[1] 1 2 3 4 5 6 7 8

$norm.obs
[1] -0.23617 -1.32037 -1.96806 -1.74783 -0.45310 1.24336 0.90063
[8] 1.42467 -1.15034 -0.85309

$logic
[1] TRUE TRUE FALSE FALSE

Here we sweep the function mean() through the list:

lapply(x, mean)

$a
[1] 4.5

$norm.obs
[1] -0.41603

$logic
[1] 0.5

Note the Boolean outcomes in logic have been coerced to numeric outcomes. Specifically,

TRUE = 1 and FALSE = 0. Here are the 1st, 2nd (median), and 3rd quartiles of x:

lapply(x, quantile, probs = 1:3/4)

$a
25% 50% 75%
2.75 4.50 6.25



92 CHAPTER 4. BASIC DATA MANAGEMENT

$norm.obs
25% 50% 75%

-1.27786 -0.65310 0.61643

$logic
25% 50% 75%
0.0 0.5 1.0

�

4.1.1.3 sapply()

The function sapply() is a user friendly wrapper for lapply() that can return a vector or

array instead of a list.

sapply(x, quantile, probs = 1:3/4)

a norm.obs logic
25% 2.75 -1.27786 0.0
50% 4.50 -0.65310 0.5
75% 6.25 0.61643 1.0

4.1.1.4 tapply()

The tapply() function allows summarization of a one dimensional array (e.g., a column or

row from a matrix) with respect to levels in a categorical variable. The function requires three

arguments.

• The first argument, X, defines a one dimensional array to be analyzed.

• The second argument, INDEX should provide a list of one or more factors (see example

below) with the same length as X.
• The third argument, FUN, is used to specify a function to be applied to X for each level in

INDEX.

Example 4.3.

Consider the dataset asbio::heart, which documents pulse rates for twenty four subjects

at four time periods following administration of a experimental treatment. These were two

active heart medications and a control. Here are average heart rates for the treatments.

data(heart)
with(heart, tapply(rate, drug, mean))

AX23 BWW9 Ctrl
76.281 81.031 71.906



4.1. OPERATIONS ON ARRAYS, LISTS AND VECTORS 93

Here are the mean heart rates for treatments, for each time frame. Note that the second

argument is defined as a list with two components, each of which can be coerced to be a factor.

with(heart, tapply(rate, list(drug = drug, time = time), mean))

time
drug t1 t2 t3 t4

AX23 70.50 80.500 81.000 73.125
BWW9 81.75 84.000 78.625 79.750
Ctrl 72.75 72.375 71.500 71.000

�

The function aggregate() can be considered a more sophisticated extension of tapply(). It
allows objects under consideration to be expressed as functions of explanatory factors, and

contains additional arguments for data specification and time series analyses.

Example 4.4.

Here we use aggregate() to get identical (but reformatted) results to the prior example.

aggregate(rate ~ drug + time, mean, data = heart)

drug time rate
1 AX23 t1 70.500
2 BWW9 t1 81.750
3 Ctrl t1 72.750
4 AX23 t2 80.500
5 BWW9 t2 84.000
6 Ctrl t2 72.375
7 AX23 t3 81.000
8 BWW9 t3 78.625
9 Ctrl t3 71.500
10 AX23 t4 73.125
11 BWW9 t4 79.750
12 Ctrl t4 71.000

Importantly, the first argument, rate ~ drug + time is in the form of a formula:

f.rate <- with(heart, rate ~ drug + time)
class(f.rate)

[1] "formula"

Here the tilde operator, ~, allows expression of the formulaic framework: y ~ model, where
y is a response variable and model specifies a system of (generally) one or more predictor

variables.

�



94 CHAPTER 4. BASIC DATA MANAGEMENT

4.1.2 outer()

Another important function for matrix operations is outer(). This algorithm allows creation

of an array that contains all possible combinations of two atomic vectors or arrays with respect

to a user-specified function. The outer() function has three required arguments.

• The first two arguments, X and Y, define arrays or atomic vectors. X and Y can be identical
if one wishes to examine pairwise operations of the array elements (see example below).

• The third argument, FUN, specifies a function to be used in operations.

Example 4.5.

Suppose I wish to find the means of all possible pairs of observations from an atomic vector. I

could use the following commands:

x <- c(1, 2, 3, 5, 4)
outer(x, x, "+")/2

[,1] [,2] [,3] [,4] [,5]
[1,] 1.0 1.5 2.0 3.0 2.5
[2,] 1.5 2.0 2.5 3.5 3.0
[3,] 2.0 2.5 3.0 4.0 3.5
[4,] 3.0 3.5 4.0 5.0 4.5
[5,] 2.5 3.0 3.5 4.5 4.0

The argument FUN = "+" indicates that we wish to add elements to each other. We divide

these sums by two to obtain means. Note that the diagonal of the output matrix contains

the original elements of x, because the mean of a number and itself is the original number.

The upper and lower triangles are identical because the mean of elements a and bwill be the

same as the mean of the elements b and a. Note that the result outer(x, x, "*") can also

be obtained using x %o% x because %o% is the matrix algebra outer product operator in R.

outer(x, x, "*")

[,1] [,2] [,3] [,4] [,5]
[1,] 1 2 3 5 4
[2,] 2 4 6 10 8
[3,] 3 6 9 15 12
[4,] 5 10 15 25 20
[5,] 4 8 12 20 16

x %o% x

[,1] [,2] [,3] [,4] [,5]
[1,] 1 2 3 5 4
[2,] 2 4 6 10 8
[3,] 3 6 9 15 12
[4,] 5 10 15 25 20
[5,] 4 8 12 20 16



4.1. OPERATIONS ON ARRAYS, LISTS AND VECTORS 95

�

4.1.3 stack(), unstack() and reshape()

When manipulating lists and dataframes it is often useful to move between so-called “long”

and “wide” data table formats. These operations can be handled with the functions stack()
and unstack(). Specifically, stack() concatenates multiple vectors into a single vector along

with a factor indicating where each observation originated, whereas unstack() reverses this
process.

Example 4.6.

Consider the 4 x 4 dataframe below.

dataf <- data.frame(matrix(nrow = 4, data = rnorm(16)))
names(dataf) <- c("col1", "col2", "col3", "col4")
dataf

col1 col2 col3 col4
1 -1.81024 -0.28419 -0.21099 1.599743
2 -1.18006 0.28553 -0.80540 1.137109
3 0.39915 -1.06059 -0.47682 -0.497502
4 0.79196 0.32283 -1.71984 -0.097261

Here I stack dataf into a long table format.

sdataf <- stack(dataf)
sdataf

values ind
1 -1.810236 col1
2 -1.180061 col1
3 0.399148 col1
4 0.791957 col1
5 -0.284194 col2
6 0.285533 col2
7 -1.060588 col2
8 0.322825 col2
9 -0.210991 col3
10 -0.805397 col3
11 -0.476819 col3
12 -1.719843 col3
13 1.599743 col4
14 1.137109 col4
15 -0.497502 col4
16 -0.097261 col4

Here I unstack sdataf.



96 CHAPTER 4. BASIC DATA MANAGEMENT

unstack(sdataf)

col1 col2 col3 col4
1 -1.81024 -0.28419 -0.21099 1.599743
2 -1.18006 0.28553 -0.80540 1.137109
3 0.39915 -1.06059 -0.47682 -0.497502
4 0.79196 0.32283 -1.71984 -0.097261

The function reshape() can handle both stacking and unstacking operations. Here I stack

dataf. The arguments timevar, idvar, and v.names are used to provide recognizable iden-

tifiers for the columns in the wide table format, observations within those columns, and

responses for those combinations.

reshape(dataf, direction = "long",
varying = list(names(dataf)),
timevar = "Column",
idvar = "Column obs.",
v.names = "Response")

Column Response Column obs.
1.1 1 -1.810236 1
2.1 1 -1.180061 2
3.1 1 0.399148 3
4.1 1 0.791957 4
1.2 2 -0.284194 1
2.2 2 0.285533 2
3.2 2 -1.060588 3
4.2 2 0.322825 4
1.3 3 -0.210991 1
2.3 3 -0.805397 2
3.3 3 -0.476819 3
4.3 3 -1.719843 4
1.4 4 1.599743 1
2.4 4 1.137109 2
3.4 4 -0.497502 3
4.4 4 -0.097261 4

�

4.2 Other Simple Data Management Functions

4.2.1 replace()

One use the function replace() to replace elements in an atomic vector based, potentially, on

Boolean logic. The function requires three arguments.



4.2. OTHER SIMPLE DATA MANAGEMENT FUNCTIONS 97

• The first argument, x, specifies the vector to be analyzed.
• The second argument, list, connotes which elements need to be replaced. A logical

argument can be used here as a replacement index.

• The third argument, values, defines the replacement value(s).

Example 4.7.

For instance:

Age <- c(21, 19, 25, 26, 18, 19)
replace(Age, Age < 25, "R is Cool")

[1] "R is Cool" "R is Cool" "25" "26" "R is Cool" "R is Cool"

Of course, one can also use square brackets for this operation.

Age[Age < 25] <- "R is Cool"
Age

[1] "R is Cool" "R is Cool" "25" "26" "R is Cool" "R is Cool"

�

4.2.2 which()

The function which can be used with logical commands to obtain address indices for data

storage object.

Example 4.8.

For instance:

Age <- c(21, 19, 25, 26, 18, 19)
w <- which(Age <= 21)
w

[1] 1 2 5 6

Elements one, two, and five meet this criterion. We can now subset based on the index w.

Age[w]

[1] 21 19 18 19

To find which element in Age is closest to 24 I could do something like:

which(abs(Age - 24) == min(abs(Age - 24)))

[1] 3



98 CHAPTER 4. BASIC DATA MANAGEMENT

�

4.2.3 sort()

By default, The function sort() sorts data from an atomic vector into an alphanumeric as-

cending order.

sort(Age)

[1] 18 19 19 21 25 26

Data can be sorted in a descending order by specifying decreasing = TRUE.

sort(Age, decreasing = T)

[1] 26 25 21 19 19 18

4.2.4 rank()

The function rank gives the ascending alphanumeric rank of elements in a vector. Ties are given

the average of their ranks. This operation is important to rank-based permutation analyses

(Aho, 2014, Ch 6).

rank(Age)

[1] 4.0 2.5 5.0 6.0 1.0 2.5

The second and last observations were the second smallest in Age. Thus, their average rank is
2.5.

4.2.5 order()

The function order() is similar to which() in that it provides element indices that accord

with an alphanumeric ordering. This allows one to sort a vector, matrix or dataframe into an

ascending or descending order, based on one or several ordered vectors.

Example 4.9.

Consider the dataframe below which lists plant percent cover data for four plant species at

three sites. In accordance with the field.data example from Ch 3, plant species are identified

with four letter codes, corresponding to the first two letters of the Linnaean genus and species

names.

field.data <- data.frame(code = c("ACMI", "ELSC", "CAEL", "TACE"),
site1 = c(12, 13, 14, 11),
site2 = c(0, 20, 4, 5),



4.2. OTHER SIMPLE DATA MANAGEMENT FUNCTIONS 99

site3 = c(20, 10, 30, 0))
field.data

code site1 site2 site3
1 ACMI 12 0 20
2 ELSC 13 20 10
3 CAEL 14 4 30
4 TACE 11 5 0

Assume that we wish to sort the data with respect to an alphanumeric ordering of species

codes. Here we obtain the ordering of the codes

o <- order(field.data$code)
o

[1] 1 3 2 4

Now we can sort the rows of field.data based on this ordering.

field.data[o,]

code site1 site2 site3
1 ACMI 12 0 20
3 CAEL 14 4 30
2 ELSC 13 20 10
4 TACE 11 5 0

�

4.2.6 unique()

To identify unique values in dataset we can use the function unique().

Example 4.10.

Below is an atomic vector listing species from a bird survey on islands in southeast Alaska.

Species ciphers follow the same coding method used in Example 4.9. Note that there are a

large number of repeats.

AK.bird <- c("GLGU", "MEGU", "DOCO", "PAJA", "COLO", "BUFF", "COGO",
"WHSC", "TUSW", "GRSC", "GRTE", "REME", "BLOY", "REPH",
"SEPL", "LESA", "ROSA", "WESA", "WISN", "BAEA", "SHOW",
"GLGU", "MEGU", "PAJA", "DOCO", "GRSC", "GRTE", "BUFF",
"MADU", "TUSW", "REME", "SEPL", "REPH", "ROSA", "LESA",
"COSN", "BAEA", "ROHA")

length(AK.bird)



100 CHAPTER 4. BASIC DATA MANAGEMENT

[1] 38

Applying unique()we obtain a listing of the 24 unique bird species.

unique(AK.bird)

[1] "GLGU" "MEGU" "DOCO" "PAJA" "COLO" "BUFF" "COGO" "WHSC" "TUSW" "GRSC"
[11] "GRTE" "REME" "BLOY" "REPH" "SEPL" "LESA" "ROSA" "WESA" "WISN" "BAEA"
[21] "SHOW" "MADU" "COSN" "ROHA"

�

4.2.7 match()

Given two vectors, the function match() indexes where objects in the second vector appear in

the elements of the first vector. For instance:

x <- c(6, 5, 4, 3, 2, 7)
y <- c(2, 1, 4, 3, 5, 6)
m <- match(y, x)
m

[1] 5 NA 3 4 2 1

The number 2 (the 1st element in y) is the 5th element of x, thus the number 5 is put 1st in

the vector m created by match. The number 1 (the 2nd element of y) does not occur in x (it
is NA). The number 4 is the 3rd element of y and x. Thus, the number 3 is given as the third

element of m, and so on.

Example 4.11.

The usefulness of match()may seem unclear at first, but consider a scenario in which I want

to convert species code identifiers in field data into actual species names. The following

dataframe is a species list that matches four letter species codes to scientific names. Note that

the list contains more species than than the field.data dataset used in Example 4.9.

species.list <- data.frame(code = c("ACMI", "ASFO", "ELSC", "ERRY", "CAEL",
"CAPA", "TACE"), names = c("Achillea millefolium", "Aster foliaceus",

"Elymus scribneri", "Erigeron rydbergii",
"Carex elynoides", "Carex paysonis",
"Taraxacum ceratophorum"))

species.list

code names
1 ACMI Achillea millefolium
2 ASFO Aster foliaceus
3 ELSC Elymus scribneri



4.3. MATCHING, QUERYING AND SUBSTITUTING IN STRINGS 101

4 ERRY Erigeron rydbergii
5 CAEL Carex elynoides
6 CAPA Carex paysonis
7 TACE Taraxacum ceratophorum

Here I add a column in the field.data of the actual species names using match().

m <- match(field.data$code, species.list$code)
field.data.new <- field.data # make a copy of field data
field.data.new$species.name <- species.list$names[m]
field.data.new

code site1 site2 site3 species.name
1 ACMI 12 0 20 Achillea millefolium
2 ELSC 13 20 10 Elymus scribneri
3 CAEL 14 4 30 Carex elynoides
4 TACE 11 5 0 Taraxacum ceratophorum

�

4.2.8 which() and %in%

We can use the operator %in% in conjunction with the function which() to achieve the same

results as match().

m <- which(species.list$code %in% field.data$code)
field.data.new$species.name <- species.list$names[m]
field.data.new

code site1 site2 site3 species.name
1 ACMI 12 0 20 Achillea millefolium
2 ELSC 13 20 10 Elymus scribneri
3 CAEL 14 4 30 Carex elynoides
4 TACE 11 5 0 Taraxacum ceratophorum

Note that the arrangement of arguments are reversed in match() and which(). In the

former we have: match(field.data$code, species.list$code). In the latter we have:

which(species.list$code %in% field.data$code).

4.3 Matching, Querying and Substituting in Strings

R contains a number of useful methods for handling character string1 data.

1In computer programming, a string is generally a (non-numeric) sequence of characters (Wikipedia, 2024h).

R frequently uses character vectors, i.e., vec <- c("a", "b", "c"). Each entry in vecwould be conventionally

considered to be a character string.



102 CHAPTER 4. BASIC DATA MANAGEMENT

4.3.1 strtrim()

The function strtrim is useful for extracting characters from vectors.

Example 4.12.

For the taxonomic codes in the character vector below, the first capital letter indicates whether

a species is a flowering plant (anthophyte) or moss (bryophyte) while the last four letters give

the species codes (see Example 4.9).

plant <- c("A_CAAT", "B_CASP", "A_SARI")

Assume that I want to distinguish anthophytes from bryophytes by extracting the first letter.

This can be done by specifying 1 in the second strtrim argument, width.

phylum <- strtrim(plant, 1)
phylum

[1] "A" "B" "A"

plant[phylum == "A"]

[1] "A_CAAT" "A_SARI"

�

4.3.2 strsplit()

The functionstrsplit() splits a character string into substrings basedonuser defined criteria.
It contains two important arguments.

• The first argument, x, specifies the character string to be analyzed.
• The second argument, split, is a character criterion that is used for splitting.

Example 4.13.

Below I split the character string ACMI in two, based on the space between thewords Achillea
and millefolium.

ACMI <- "Achillea millefolium"
strsplit(ACMI, " ")

[[1]]
[1] "Achillea" "millefolium"

Note that the result is a list. To get back to a vector (now with two components), I can use the

function unlist().



4.3. MATCHING, QUERYING AND SUBSTITUTING IN STRINGS 103

unlist(strsplit(ACMI, " "))

[1] "Achillea" "millefolium"

Here I split based on the letter "l".

strsplit(ACMI, "l")

[[1]]
[1] "Achi" "" "ea mi" "" "efo" "ium"

Interestingly, letting the split criterion equal NULL results in spaces being placed between

every character in a string.

strsplit(ACMI, NULL)

[[1]]
[1] "A" "c" "h" "i" "l" "l" "e" "a" " " "m" "i" "l" "l" "e" "f" "o" "l"
[18] "i" "u" "m"

We can use this outcome to reverse the order of characters in a string.

sapply(lapply(strsplit(ACMI, NULL), rev), paste, collapse = "")

[1] "muilofellim aellihcA"

The function rev() provides a reversed version of its first argument, in this case a result from

strsplit(). The function paste() can be use to paste together character strings.

�

Criteria for querying strings can include multiple characters in a particular order, and a partic-

ular case:

x <- "R is free software and comes with ABSOLUTELY NO WARRANTY"
strsplit(x, "so")

[[1]]
[1] "R is free "
[2] "ftware and comes with ABSOLUTELY NO WARRANTY"

Note that the "SO" in "ABSOLUTELY" is ignored because it is upper case.

4.3.3 grep() and grepl()

The functions grep() and grepl() can be used to identify which elements in a character

vector have a specified pattern. They have the same first two arguments.



104 CHAPTER 4. BASIC DATA MANAGEMENT

• The first argument, pattern specifies a patterns to be matched. This can be a character

string, or object coercible to a character string, or a regular expression (see below).

• The second argument, x, is a character vector where matches are sought.

Example 4.14.

The function grep() returns indices identifying which entries in a vector contain a queried

pattern. In the character vector below, we see that entries five and six have the same genus,

Carex.

names = c("Achillea millefolium", "Aster foliaceus",
"Elymus scribneri", "Erigeron rydbergii",
"Carex elynoides", "Carex paysonis",
"Taraxacum ceratophorum")

grep("Carex", names)

[1] 5 6

The function grepl() does the same thing with Boolean outcomes.

grepl("Carex", names)

[1] FALSE FALSE FALSE FALSE TRUE TRUE FALSE

Of course, we could use this information to subset names.

names[grep("Carex", names)]

[1] "Carex elynoides" "Carex paysonis"

We can also get grep to return the values directly by specifying value = TRUE.

grep("Carex", names, value = TRUE)

[1] "Carex elynoides" "Carex paysonis"

�

4.3.4 gsub()

The function gsub() can be used to substitute text that has a specified pattern. Several of its

arguments are identical to grep() and grepl():

• As before, the first argument, pattern, specifies a pattern to be matched.

• The second argument, replacement, specifies a replacement for the matched pattern.

• The third argument, x, is a character vectorwhereinmatches are sought and substitutions

are made.



4.3. MATCHING, QUERYING AND SUBSTITUTING IN STRINGS 105

Example 4.15.

Here we substitute "C." for occurrences of "Carex" in names.

gsub("Carex", "C.", names)

[1] "Achillea millefolium" "Aster foliaceus"
[3] "Elymus scribneri" "Erigeron rydbergii"
[5] "C. elynoides" "C. paysonis"
[7] "Taraxacum ceratophorum"

�

4.3.5 gregexpr()

The function gregexpr() identifies the start and end ofmatching sections in a character vector.

Example 4.16.

Here we examine the first two entries in names, looking for the genus Aster.

gregexpr("Aster", names[c(1:2)])

[[1]]
[1] -1
attr(,"match.length")
[1] -1
attr(,"index.type")
[1] "chars"
attr(,"useBytes")
[1] TRUE

[[2]]
[1] 1
attr(,"match.length")
[1] 5
attr(,"index.type")
[1] "chars"
attr(,"useBytes")
[1] TRUE

The output list is cryptic at best and requires some explanation. The first two elements

in each of the two list components indicate the character number of the start and end of

the matched string. For the first list component, these elements are given the identifier -1
because "Achillea millefolium" does not contain the pattern "Aster". For the second list

component, these elements are 1 and 5 because "Aster" makes up the first five letters of

"Aster foliaceus".



106 CHAPTER 4. BASIC DATA MANAGEMENT

�

4.3.6 Regular Expressions

A number of R functions for managing character strings, including grep(), grepl(),
gregexpr(), gsub(), and strsplit(), can can incorporate regular expressions. In computer

programming, a regular expression (often abbreviated as regex) is a sequence of characters

that allow pattern matching in text. Regular expressions have developed within a number

of programming frameworks including the POSIX standard (the Portable Operating System

Interface standard), developed by the IEEE, and particularly the language Perl2. Regular

expressions in R include extended regular expressions (this is the default for most pattern

matching and replacement R functions), and Perl-like regular expressions.

4.3.6.1 Extended Regular Expressions

Default extended regular expressions in R use a POSIX framework for commands3, which

includes the use of particular metacharacters. These are: \, |, ( ), [ ], ^, $, ., { }, *, +, and ?.
The metacharacters will vary in meaning depending if they occur outside of square brackets, [
and ], or inside of square brackets. The former usage means that they are part of a character

class (see below). In non-bracketed usage, the metacharacters in the subset below have the

following applications (see https://www.pcre.org/original/pcre.txt):

• ^ start of string or line.
• $ end of string or line.

• . match any character except newline.

• | start of alternative branch.
• ( ) start and end subpattern.

• { } start and end min/max repetition specification.

Several regular expression metacharacters can be placed at the end of the end of a regular

expression to specify repetition. For instance, "*" indicates the preceding pattern should be

matched zero or more times, "{+}" indicates the preceding pattern should be matched one or

more times, "{n}" indicates the preceding pattern should be matched exactly nmore times,

and "{n,}" indicates the preceding pattern should be matched n or more times.

Example 4.17.

Wewill use the function regmatches(), which extracts or replaces matched substrings from

gregexpr() summaries, to illustrate.

string <- "%aaabaaab"
ID <- gregexpr("a{1}", string)
regmatches(string, ID)

2The Perl programming language was introduced by Larry Wall in 1987 as a Unix scripting tool to facilitate

report processing (Wikipedia, 2023c). Despite criticisms as an awkward language, Perl remains widely used for

its regular expression framework and string parsing capabilities.
3Specifically, they use a version of the POSIX 1003.2 standard.

https://www.pcre.org/original/pcre.txt
https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap09.html.


4.3. MATCHING, QUERYING AND SUBSTITUTING IN STRINGS 107

[[1]]
[1] "a" "a" "a" "a" "a" "a"

ID <- gregexpr("a{2}", string)
regmatches(string, ID)

[[1]]
[1] "aa" "aa"

ID <- gregexpr("a{2,}", string)
regmatches(string, ID)

[[1]]
[1] "aaa" "aaa"

�

Example 4.18.

Metacharacters can be used together. For instance, the code below demonstrates how one

might get rid of one or more extra spaces at the end of character strings.

string <- c("###Now is the time ",
"# for all ",
"#",
" good men",
"### to come to the aid of their country. ")

out <- gsub(" +$", "", string) # drop extra space(s) at end of strings
out <- gsub("^#*","", out) # drop pound sign(s)

paste(out, collapse = "")

[1] "Now is the time for all good men to come to the aid of their country."

�

Example 4.19.

As a biological example, microbial “taxa” identifiers can include cryptic Amplicon Sequence

Variant (ASV) codes, followed by a general taxonomic assignment. For example, here is an ASV

identifier for a bacterium within the family Comamonadaceae.

asv <- "6abc517aa40e9e7b9c652902fe04bb1a:f__Comamonadaceae"

We can delete the ASV code, which ends in a colon, with:



108 CHAPTER 4. BASIC DATA MANAGEMENT

gsub(".*:", "", asv)

[1] "f__Comamonadaceae"

The regex script in the first argument means: “match any character string occurring zero or

more times that ends in :”.

�

Example 4.20.

As another example, RMarkdown delimits monospace font using accent grave metacharacters,

` `, while LaTeX applies this font between the expression \texttt{ and }. Below I convert

a RMarkdown-style character vector containing some monospace strings to a LaTeX-style

character vector.

char.vec <- c("`+`", "addition", "$2 + 2$", "`2 + 2`")
gsub("(`)(.*)(`)","\\\texttt{\\2}", char.vec)

[1] "\texttt{+}" "addition" "$2 + 2$" "\texttt{2 + 2}"

With the code

"(`)(.*)(`)"

I subset RMarkdown strings in char.vec into three potential components: 1) the `metachar-

acter beginning the string, 2) the text content between `metacharacters, and 3) the closing `
metacharacter itself. I insert the content in item 2 (indicated as \\2) between \texttt{ and }
using:

"\\\texttt{\\2}"

�

Importantly, Example 4.20 illustrates the procedure to use if a queried character is itself a

general expression metacharacter. For instance, the backslash in \texttt. In this case, the

metacharacter must be escaped using single or double backslashes. That is, \textttmust be

specified as \\\texttt in gsub().

Example 4.21.

Here I ask for a string split based on the appearance of ? (which is a regex metacharacter) and

% (which is not).

string <- "m?2%b"
strsplit(string, "[\\?%]")

[[1]]
[1] "m" "2" "b"



4.3. MATCHING, QUERYING AND SUBSTITUTING IN STRINGS 109

�

Character class A regular expression character class is comprised of a collection of charac-

ters, specifying some query or pattern, situated between quotes (single or double) and square

brace metacharacters, e.g., "[" and "]". Thus, the code "[\\?%]" in the previous example

defines a character class. Character class pattern matches will be evaluated for any single

character in the specified text. The reverse will occur if the first character of the pattern is the

regular expression caret metacharacter, ^. For example, the expression "[0-9]"matches any

single numeric character in a string, (the regular expression metacharacter - can be used to

specify a range) and [^abc]matches anything except the characters "a", "b" or "c".

Example 4.22.

Consider the following examples:

string <- "a1c&m2%b"
strsplit(string, "[0-9]")

[[1]]
[1] "a" "c&m" "%b"

strsplit(string, "[^abc]")

[[1]]
[1] "a" "c" "" "" "" "b"

�

Example 4.23.

This regular expression will match most email addresses:

pattern <- "[-a-z0-9_.%]+\\@[-a-z0-9_.%]+\\.[a-z]+"

The expression literally reads: “1) find one or more occurrences of characters in a-z or A-Z or

0-9 or dashes or periods, followed by 2) the ampersand symbol (literally), followed by 3) one

or more occurrences of characters in a-z or A-Z or 0-9 or dashes or periods, followed by 4) a

literal period, followed by one or more occurrences of the letters a-z or A-Z.” Here is a string

we wish to query:

string <- c("abc_noboby@isu.edu",
"text with no email",
"me@mything.com",
"also",
"you@yourspace.com",
"@you"
)



110 CHAPTER 4. BASIC DATA MANAGEMENT

We confirm that elements 1, 3, and 5 from string are email addresses.

grep(pattern, string, ignore.case = TRUE, value = TRUE)

[1] "abc_noboby@isu.edu" "me@mything.com" "you@yourspace.com"

�

Certain character classes are predefined. These classes have names that are bounded by two

square brackets and colons, and include "[[:lower:]]" and "[[:upper:]]"which identify

lower and upper case letters, "[:punct:]"which identifies punctuation, [[:alnum:]], which
identifies all alphanumeric characters, and "[[:space:]]", which identifies space characters,

e.g., tab and newline.

string <- c("M2Ab", "def", "?", "%", "\n")
grepl("[[:lower:]]", string)

[1] TRUE TRUE FALSE FALSE FALSE

grepl("[[:upper:]]", string)

[1] TRUE FALSE FALSE FALSE FALSE

grepl("[[:punct:]]", string)

[1] FALSE FALSE TRUE TRUE FALSE

grepl("[[:space:]]", string) # item five is a newline request

[1] FALSE FALSE FALSE FALSE TRUE

Here I ask R to return elements from string that are three or more characters long.

grep("[[:alnum:]]{3}", string, value = TRUE)

[1] "M2Ab" "def"

4.3.6.1.1 Turning off regular expressions For some pattern matching and replacement

jobs it may be best turn off the default extended regular expressions and use exact matching by

specifying fixed = TRUE. For example, Rmay place periods in the place of spaces in character

strings and column names in dataframes and arrays.

Example 4.24.

Consider the following example:

countries <- c("United.States", "United.Arab.Emirates", "China", "Germany")
gsub(".", " ", countries)



4.3. MATCHING, QUERYING AND SUBSTITUTING IN STRINGS 111

[1] " " " " " "
[4] " "

Note that using gsub(".", " ", countries) results in the replacement of all text with

spaces because of the meaning of the period metacharacter. To get the desired result we could

use:

gsub(".", " ", countries, fixed = TRUE)

[1] "United States" "United Arab Emirates" "China"
[4] "Germany"

Of course we could also double escape the period.

gsub("\\.", " ", countries)

[1] "United States" "United Arab Emirates" "China"
[4] "Germany"

�

4.3.6.2 Perl-like Regular Expressions

The R character string functions grep(), grepl(), regexpr(), gregexpr(), sub(), gsub(),
and strsplit() allow Perl-like regular expression patternmatching. This is done by specifying

perl = TRUE, which switches regular expression handling to the PRCE package. Perl allows

handling of the POSIX predefined character classes, e.g., "[[:lower:]]", along with a wide

variety of other calls which are generally implemented using metacharacters and double

backslash commands. Here are some examples.

• \\d any decimal digit.

• \\D any character that is not a decimal digit.

• \\h any horizontal white space character (e.g., tab, space).
• \\H any character that is not a horizontal white space character.
• \\s any white space character.
• \\S any character that is not a white space character.
• \\v any vertical white space character (e.g., newline).
• \\V any character that is not a vertical white space character.
• \\w any word, i.e., letter or character components separated by white space.

• \\W any non word.

• \\b a word boundary.

• \\U upper case character (dependent on context).

• \\L lower case character (dependent on context).

Note that reversals in meaning occur for capitalized and uncapitalized commands.

Example 4.25.



112 CHAPTER 4. BASIC DATA MANAGEMENT

Here we identify string entries containing numbers.

string <- c("Acidobacteria", "Actinobacteria", "TM7.1", "Gitt-GS-136",
"Chloroflexia", "Bacili")

grep("\\d", string, perl = TRUE)

[1] 3 4

And those containing non-numeric characters (i.e., all of the entries).

grep("\\D", string, perl = TRUE)

[1] 1 2 3 4 5 6

To subset non-numeric entries, one could do something like:

string[-grep("\\d", string, perl = TRUE)]

[1] "Acidobacteria" "Actinobacteria" "Chloroflexia" "Bacili"

�

Example 4.26.

As a slightly extended example we will count the number of words in the description of the

GNU public licences inR (obtained via RShowDoc("COPYING")). Ideas here largely follow from

the function DescTools::StrCountW() (Signorell, 2023).

Text can be read from a connection using the function readLines().

GNU <- readLines(RShowDoc("COPYING"))
head(GNU)

[1] "\t\t GNU GENERAL PUBLIC LICENSE"
[2] "\t\t Version 2, June 1991"
[3] ""
[4] " Copyright (C) 1989, 1991 Free Software Foundation, Inc."
[5] " 51 Franklin St, Fifth Floor, Boston, MA 02110-
1301 USA"
[6] " Everyone is permitted to copy and distribute verbatim copies"

Note that the escaped command \t represent the ASCII (American character encoding stan-

dard) control character for tab return. Other useful escaped control characters include \n,
indicating new line or carriage return.

To search for words, we will actually identify string components that are not words, identified

with the Perl regex command \\W and word boundaries, i.e., \\b. We can combine these



4.3. MATCHING, QUERYING AND SUBSTITUTING IN STRINGS 113

summarily as: \\b\\W+\\b. The call \\W+ indicates a non-word match occurring one or more

times. Here we apply this regular expression to the first element of GNU.

GNU[1]

[1] "\t\t GNU GENERAL PUBLIC LICENSE"

gregexpr("\\b\\W+\\b", GNU[1], perl = TRUE)

[[1]]
[1] 10 18 25
attr(,"match.length")
[1] 1 1 1
attr(,"index.type")
[1] "chars"
attr(,"useBytes")
[1] TRUE

Matches occur at three locations, 10, 18, and 25, which separate the four words GNU GENERAL
PUBLIC LICENSE. Thus, to analyze the entire document we could use:

sum(sapply(gregexpr("\\b\\W+\\b", GNU, perl = TRUE),
function(x) sum(x > 0)) + 1)

[1] 3048

There are 3048 total words in the license description.

�

One can identify substrings by number using Perl.

Example 4.27.

In this example, I subdivide a string into two components, the first character, i.e., "(\\w)", and
the remaining zero or more characters: "(\\w*)". These are referred to in the substitute
argument of gsub as items \\1 and \\2, respectively. Capitalization for these substrings are

handled in different ways below.

string <- "achillea"
gsub("(\\w)(\\w*)", "\\U\\1\\U\\2", string, perl=TRUE) # all caps

[1] "ACHILLEA"

gsub("(\\w)(\\w*)", "\\L\\1\\U\\2", string, perl=TRUE) # low, then upper case

[1] "aCHILLEA"

gsub("(\\w)(\\w*)", "\\U\\1\\L\\2", string, perl=TRUE) # up, then lower case

[1] "Achillea"



114 CHAPTER 4. BASIC DATA MANAGEMENT

The functions tolower() and toupper() provide simpler approaches to convert letters to

lower and upper case, respectively.

toupper(string)

[1] "ACHILLEA"

�

4.4 Date-Time Classes

There are two basic R date-time classes, POSIXlt and POSIXct4. Class POSIXct represents the

(signed) number of seconds since the beginning of 1970 (in the UTC time zone) as a numeric

vector. An object of class POSIXlt will be comprised of a list of vectors with the names sec, min,
hour, mday (day of month), mon (month), year, wday (day of week), and yday (day of year).

POSIX naming conventions include:

• %m = Month as a decimal number (01–12).

• %d = Day of the month as a decimal number (01–31).

• %Y = Year. Designations in 0:9999 are accepted.
• %H = Hour as a decimal number (00–23).

• %M = Minute as a decimal number (00–59

Example 4.28.

As an example, below are twenty dates and corresponding binary water presence measures (0

= water absent, 1 = water present) recorded at 2.5 hour intervals for an intermittent stream

site in southwest Idaho (Aho et al., 2023a).

dates <- c("08/13/2019 04:00", "08/13/2019 06:30", "08/13/2019 09:00",
"08/13/2019 11:30", "08/13/2019 14:00", "08/13/2019 16:30",
"08/13/2019 19:00", "08/13/2019 21:30", "08/14/2019 00:00",
"08/14/2019 02:30", "08/14/2019 05:00", "08/14/2019 07:30",
"08/14/2019 10:00", "08/14/2019 12:30", "08/14/2019 15:00",
"08/14/2019 17:30", "08/14/2019 20:00", "08/14/2019 22:30",
"08/15/2019 01:00", "08/15/2019 03:30")

pres.abs <- c(1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1)

To convert the character string dates to a date-time objectwe can use the function strptime().
We have:

4Again, the POSIX prefix refers to the IEEE standard Portable Operating System Interface



4.4. DATE-TIME CLASSES 115

dates.ts <- strptime(dates, format = "%m/%d/%Y %H:%M")
class(dates.ts)

[1] "POSIXlt" "POSIXt"

Note that the dates can now be evaluated numerically.

dates.df <- data.frame(dates = dates.ts, pres.abs = pres.abs)
summary(dates.df)

dates pres.abs
Min. :2019-08-13 04:00:00 Min. :0.00
1st Qu.:2019-08-13 15:52:30 1st Qu.:0.75
Median :2019-08-14 03:45:00 Median :1.00
Mean :2019-08-14 03:45:00 Mean :0.75
3rd Qu.:2019-08-14 15:37:30 3rd Qu.:1.00
Max. :2019-08-15 03:30:00 Max. :1.00

I can also easily extract time series components.

dates.ts$mday # day of month

[1] 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 15 15

dates.ts$wday # day of week

[1] 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4

dates.ts$hour # hour

[1] 4 6 9 11 14 16 19 21 0 2 5 7 10 12 15 17 20 22 1 3

�

Exercises

1. Using the plant dataset fromQuestion 5 in the Exercises at the end of Chapter 3, perform

the following operations.

(a) Attempt to simultaneously calculate the column means for plant height and soil %

N using FUN = mean in apply(). Was there an issue? Why?

(b) Eliminate missing rows in plant using na.omit() and repeat (a). Did this change

the mean for plant height? Why?

(c) Modify the FUN argument in apply() to be: FUN = function(x) mean(x, na.rm
= TRUE). This will eliminate NAs on a column by column basis.

(d) Compare the results in (a), (b), (c). Which is the best approach? Why?



116 CHAPTER 4. BASIC DATA MANAGEMENT

(e) Find the mean and variance of plant heights for each Management Type in plant
using tapply(). Use the best practice approach for FUN, as deduced in (d).

2. For the questions below, use the list list.data below.

(a) Use sapply(list.data, FUN = length) to get the number of components in

each element of list.data.

(b) Repeat (a) using lapply(). How is the output in (b) different from (a)?

list.data <- list(a = 1:9, height = rnorm(50),
greet = c("hello", "goodbye", "hello"))

3. A frequently used statistical application is the calculation of all possiblemean differences.

Assume that we have the means given in the object means below.

(a) Calculate all possible mean differences using means as the first two arguments in

outer(), and letting FUN = "-".

(b) Extract meaningful and non-redundant differences by using upper.tri() or

lower.tri() (Section 3.4.4). There should be (52) = 10meaningful (not simply a

mean subtracted from itself) and non-redundant differences.

means <- c(trt1 = 20.5, trt2 = 15.3, trt3 = 22.1, trt4 = 30.4,
trt5 = 28)

4. Using the plant dataset from Question 5 in the Exercises for Chapter 3, perform the

following operations.

(a) Use the function replace() to identify samples with soil N less than 13.5% by

identifying them as "Npoor".
(b) Use the function which() to identify which plant heights are greater than or equal

to 33.2 dm.

(c) Sort plant heights using the function sort().
(d) Sort the plant dataset with respect to ascending values of plant height using the

function order().

5. Using match() or which and %in%, replace the code column names in the dataset

cliff.sp from the package asbio, with the correct scientific names (genus and specific

epithet) from the dataframe sp.list below.

sp.list <- data.frame(code = c("L_ASCA","L_CLCI","L_COSPP","L_COUN",
"L_DEIN","L_LCAT", "L_LCST","L_LEDI","M_POSP","L_STDR","L_THSP",
"L_TOCA","L_XAEL","M_AMSE", "M_CRFI","M_DISP","M_WECO","P_MIGU",
"P_POAR","P_SAOD"),
sci.name = c("Aspicilia caesiocineria","Caloplaca citrina",
"Collema spp.", "Collema undulatum", "Dermatocarpon intestiniforme",



4.4. DATE-TIME CLASSES 117

"Lecidea atrobrunnea", "Lecidella stigmatea", "Lecanora dispersa",
"Pohlia sp.", "Staurothele drummondii", "Thelidium species",
"Toninia candida", "Xanthoria elegans", "Amblystegium serpens",
"Cratoneuron filicinum", "Dicranella species", "Weissia controversa",
"Mimulus guttatus", "Poa pattersonii", "Saxifraga odontoloma"))

6. Using the sp.list dataframe from the previous question, perform the following opera-

tions:

(a) Apply strsplit() to the the column sp.list$sci.name to create a two column

dataframe with genus and corresponding species names.

(b) A two character prefix in the column sp.list$code indicates whether a taxon is

a lichen (prefix = "L_"), a marchantiophyte (prefix = "M_"), or a vascular plant
(prefix = "P_"). Use grep() to identify marchantiophytes.

7. Use the string vector string below to answer the following questions:

(a) Use regular expressions in the pattern argument of gsub() to get rid of extra

spaces at the start of string elements while preserving spaces between words.

(b) Use the predefined character class [[:alnum:]] and an accompanying quantifier

in the pattern argument from grep() to count the number of words whose length

is greater than or equal to four characters.

string <- c(" Statistics is ", " a ", " great topic.")

8. Remove the numbers from the character vector below using gsub() and an appropriate

Perl-like regular expression.

x <- c("enzyme1","enzyme12","enzyme3","tRNA1","tRNA205",
"mRNA6","mRNA17","mRNA8","mRNA100")

9. Consider the character vector times below, which has the format: day-month-year
hour:minute:second.

(a) Convert times into an object of class POSIXlt called time.pos using the function
strptime().

(b) Extract the day of the week from time.pos.

(c) Sort time.pos using sort() to verify that time.pos is quantitative.

times <- c("12-12-2023 12:12:20",
"12-01-2021 01:12:40",
"15-10-2021 23:10:15",



118 CHAPTER 4. BASIC DATA MANAGEMENT

"25-07-2022 13:09:45")



Chapter 5

Welcome to the Tidyverse

“Data is like garbage. You’d better know what you are going to do with it before you

collect it.”

-Mark Twain, 1835 - 1910

5.1 The Tidyverse

This chapter demonstrates the data management capabilities of the tidyverse (Wickham et al.,

2019). Thus, Chapter 5 can be considered a tidyverse reconsideration of Ch 4. The tidyverse is

currently a collection of eight core packages (Fig 5.1). These are:

• dplyr Grammar and functions for data manipulation.

• forcats Tools for solving common problems with factors.

• ggplot2 A system for “declaratively creating graphics”, based on the book The Grammar

of Graphics (Wilkinson, 2012).

• purrr An enhancement of R’s functional programming (FP) toolkit.

• readr Methods for reading rectangular data.

• stringr Functions to facilitate working with strings.

• tibble A “modern re-imagining of the data frame.”

• tidyr A set of functions for “tidying data.”

119

https://dplyr.tidyverse.org/
https://forcats.tidyverse.org/
https://ggplot2.tidyverse.org/
https://purrr.tidyverse.org/
https://readr.tidyverse.org/
https://www.tidyverse.org/packages/
https://tibble.tidyverse.org/
https://tidyr.tidyverse.org/


120 CHAPTER 5. WELCOME TO THE TIDYVERSE

Figure 5.1: The main packages of the tidyverse.

The tidyverse library also contains several useful ancillary packages, including lubridate, re-

shape2, hms, blob,margrittr, and glue. While installing tidyversewill result in the installation

of both main and ancillary packages, loading the tidyverse will result only in the complete

loading of the eight main tidyverse packages.

Importantly, this chapter is not meant to be an authoritative summary of the tidyverse.

Coverage here is mostly limited to the core data management packagesmagrittr, tibble, dplyr,

stringer, and the ancillary packages lubridate and reshape2. The tidyverse ggplot2 package

is the major focus of Chapter 7. Wickham et al. (2023) provides a succinct but thorough

introduction to the tidyverse in the open source book R for Data Science. Useful tidyverse

“cheatsheets” can be found here.

The tidyverse packages can be downloaded using:

install.packages("tidyverse")

5.2 Pipes

An important convention of the tidyverse is the widespread use of the forward pipe operator:

|> . In programming, a pipe is a set of commands connected in series, where the output of one

command is the input of the next1. In many cases, use of pipes allows clearer representations

of coding processes2. Incidentally, the |> pipe, from the base package, is motivated by an older

forward pipe operator from the tidyverse packagemagrittr, %>%. As of R 4.1, the native pipe

operator for the tidyverse is |> (although %>%will still work ifmagrittr is loaded)3. Notably,

while |> is more syntactically (and algorithmically) streamlined than %>%, there are several

1Pipe programming dates back to early developments in Unix operating systems (Ritchie, 1984; Bell Labs,

2004), wherein pipes are codified as vertical bars "|". Along with Unix/Linux, pipes are widely used in the

languages F#, Julia, and JavaScript, among others.
2In particular, when you see |> it is helpful to think “and then”.
3The RStudio shortcut for %>% is Ctrl+Shift+m. To force RStudio to default to |>when using Ctrl+Shift+m

(or some other keyboard shortcut), one can modify appropriate settings in Tools>Global Options>Code.

https://r4ds.hadley.nz/
https://posit.co/resources/cheatsheets/


5.2. PIPES 121

features available to %>% that do not exist for |>, including the potential for a placeholder
operator4. Nonetheless, I focus on |>, not %>%, here.

Example 5.1.

Consider the circular operation: log𝑒(exp(1)). We could write this as,

1 |> exp() |> log()

[1] 1

Here the number 1 is piped into the function exp(), with the result: exp(1) = 𝑒1 = 𝑒, and
this outcome is piped into the function log(), with the result: log𝑒 𝑒 = 1. Because the first
arguments of exp() and log() are simply calls to numeric data, and these are provided by the

previous pipe segment, we do not have to include information about x for f(x) operations.
Thus, when functions require only the previous pipe segment result as an argument, then

x |> f() is equivalent to 𝑓(𝑥)5. In the case that multiple arguments need to be specified,

the script x |> f(y) is equivalent to 𝑓(𝑥, 𝑦), and x |> f(y) |> g(z) describes 𝑔(𝑓(𝑥, 𝑦), 𝑧).
For instance,

10 |> log(base = 2)

[1] 3.3219

�

Example 5.2.

This example illustrates that the forward pipe works recursively from the result of the previous

pipe segment.

head(Loblolly) # First 6 rows of data

Grouped Data: height ~ age | Seed
height age Seed

1 4.51 3 301
15 10.89 5 301
29 28.72 10 301
43 41.74 15 301
57 52.70 20 301
71 60.92 25 301

4In general, the dot placeholder operator, ., from magrittr allows operations like 𝑓(𝑥, 𝑦) by specifying x
|> f(.,y). For example: 2 %>% log(10, base = .). In this script the number 2 will be piped into the base
argument in the function log().

5The %>% forward pipe does not even require the () no argument designation. That is, x %>% f is equivalent
to 𝑓(𝑥).



122 CHAPTER 5. WELCOME TO THE TIDYVERSE

Loblolly |>
head() |>
tail(2) # Last 2 rows from first 6 rows

Grouped Data: height ~ age | Seed
height age Seed

57 52.70 20 301
71 60.92 25 301

�

Example 5.3.

We can define the result of a pipe to be a global variable. Consider the script below (Fig 5.2).

x <- seq(1,10,length=100)
y <- x |> sin()
plot(x, y, type = "l", ylab = "sin(x)", xlab = "x (radians)")

2 4 6 8 10

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x (radians)

si
n(

x)

Figure 5.2: Creating a global variable (object) resulting from a pipeline.

�



5.3. TIBBLE 123

5.2.1 Other Pipes

It is worth noting that, in addition to %>%,magrittr contains several other potentially useful

pipe operators. These include the assignment pipe and the tee pipe. The assignment pipe

operator, %<>%, will pipe x into one or more f(x) expressions, and then assign the result to

the name x6. The tee pipe operator %T>% works like %>%, except the return value in x %T>%
f(x) is x itself. This is useful when a pipeline requires a side-effect like plotting or printing7.

5.3 tibble

The tidyverse package tibble provides an alternative to the data.frame format of data storage,

called a tibble. Tibbles have classes dataframe and tbl_df, allowing them to posses additional

characteristics including enhanced printing (see Example 5.4 below). Additional distinguishing

characteristics of tibbles include: 1) a character vector is not automatically coerced to have

class factor, 2) recycling (see Section 3.1.1) only occurs for an input of length one, and 3)

there is no partial matching when $ is used to index by tibble columns by name8. The functions

tibble() generates tibbles. The function as_tibble() coerces a dataframe to be a tibble.

Example 5.4.

Here we compare dataframe and tibble output of the same data.

data <- data.frame(numbers = 1:3, letters = c("a","b","c"),
date = as.Date(c("2021-12-1", "2021-12-2",

"2021-12-2"),
format = "%Y-%m-%d"))

data

numbers letters date
1 1 a 2021-12-01
2 2 b 2021-12-02
3 3 c 2021-12-02

library(tidyverse)
datat <- as_tibble(data)
datat

# A tibble: 3 x 3
numbers letters date

<int> <chr> <date>
6For instance, library(magrittr); x <- -4:4; x %<>% abs %>% sort; x would print the pipe-

modified version of x.
7For instance, rnorm(20) |> matrix(ncol = 2) %T>% plot |> colSums. In this case a plot and the sums

of columns will both be printed (see Example 5.12).
8According to package tibble: “…tibbles are lazy and surly: they do less and complain more than base

dataframes. This forces problems to be tackled earlier and more explicitly, typically leading to code that is

more expressive and robust.”



124 CHAPTER 5. WELCOME TO THE TIDYVERSE

1 1 a 2021-12-01
2 2 b 2021-12-02
3 3 c 2021-12-02

�

5.4 dplyr

The dplyr package contains a collection of core tidyverse algorithms for data manipulation9.

Table 5.1 lists some useful dplyr functions.

Table 5.1: Important dplyr data management functions.

Function Usage

summarise() Numerical summaries of variables.

group_by Group a dataframe by a categorical variable.

filter() Subset variables based on outcomes.

arrange() Reorder rows in a dataframe or tibble.

mutate() Creates new variables from functions of existing variables.

select() Selects variables from tibbles or dataframes.

5.4.1 summarize()

The function summarize(), or equivalently summarise(), creates a new data frame with one

row for each combination of specified grouping variables. If no groups are given (for instance,

in the case that group_by is not used to group data), dataframe rows will be summaries of all

observations in the required input .data argument.

Example 5.5.

Here we use summarize() to obtain means for loblolly pine height (in feet) and age (in years).

Loblolly |>
summarise(mean.height.ft = mean(height), mean.age.yrs = mean(age))

mean.height.ft mean.age.yrs
1 32.364 13

�

9dplyr has largely replaced the now retired plyr package.



5.4. DPLYR 125

5.4.2 group_by()

The group_by() function is often used in conjunction with other dplyr functions, including

summarize(), to provide an underlying grouping framework for data summaries.

Example 5.6.

Here we use group_by() with summarize() to describe the Loblolly height data. Specifi-
cally, we will take the mean and the variance of Loblolly$heightwith respect to categories

specified in group_by().

Loblolly |>
group_by(Seed) |>
summarise(mean.height.ft = mean(height),

var.height.ft2 = var(height)
) |>

head(5)

# A tibble: 5 x 3
Seed mean.height.ft var.height.ft2
<ord> <dbl> <dbl>

1 329 30.3 443.
2 327 30.6 440.
3 325 31.9 468.
4 307 31.3 494.
5 331 31.0 495.

More than only grouping variable can be specified in group_by():

Loblolly |>
group_by(Seed, age) |>
summarise(mean.height.ft = mean(height),

var.height.ft2 = var(height)
) |>

head(5)

`summarise()` has grouped output by 'Seed'. You can override using the
`.groups` argument.

# A tibble: 5 x 4
# Groups: Seed [1]

Seed age mean.height.ft var.height.ft2
<ord> <dbl> <dbl> <dbl>

1 329 3 3.93 NA
2 329 5 9.34 NA
3 329 10 26.1 NA
4 329 15 37.8 NA
5 329 20 48.3 NA



126 CHAPTER 5. WELCOME TO THE TIDYVERSE

Clearly, group_by() and summarise() allow more options than the base function tapply()
(Section 4.1.1.4). The latter function only provides summaries of groups within a single cate-

gorical INDEX, with respect to a single quantitative vector, and a single user-defined function.

Starting with dplyr 1.1.0, we can use the .by argument in summarize to bypass group_by(),
although this argument is experimental, andmay be deprecated in the future (see ?summarise).

Loblolly |>
summarise(mean.height.ft = mean(height),

var.height.ft2 = var(height),
.by = Seed) |>

head(5)

Seed mean.height.ft var.height.ft2
1 301 33.247 512.50
2 303 34.107 552.24
3 305 35.115 572.51
4 307 31.328 493.83
5 309 33.782 535.12

�

5.4.3 filter()

The function filter() provides a straightforward way to extract dataframe rows based on

Boolean operators.

Example 5.7.

Here we obtain rows in Loblolly associated with seed type 301.

Loblolly |>
filter(Seed == "301")

Grouped Data: height ~ age | Seed
height age Seed

1 4.51 3 301
15 10.89 5 301
29 28.72 10 301
43 41.74 15 301
57 52.70 20 301
71 60.92 25 301

Here are Loblolly rows associated with height responses greater than 60 feet.

Loblolly |>
filter(height > 60)



5.4. DPLYR 127

Grouped Data: height ~ age | Seed
height age Seed

71 60.92 25 301
72 63.39 25 303
73 64.10 25 305
75 63.05 25 309
77 60.07 25 315
78 60.69 25 319
79 60.28 25 321
80 61.62 25 323

�

5.4.4 arrange()

The function arrange() orders the rows of a data frame based on the alphanumeric ordering

of specified data.

Example 5.8.

Here we use arrange() to sort the result from the previous chunk from smallest to largest

loblolly pine heights.

Loblolly |>
filter(height > 60) |>
arrange(height)

Grouped Data: height ~ age | Seed
height age Seed

77 60.07 25 315
79 60.28 25 321
78 60.69 25 319
71 60.92 25 301
80 61.62 25 323
75 63.05 25 309
72 63.39 25 303
73 64.10 25 305

One can use arrange(desc()) to sort a dataframe in descending (largest-to-smallest) order.

Loblolly |>
filter(height > 60) |>
arrange(desc(height))

Grouped Data: height ~ age | Seed
height age Seed

73 64.10 25 305



128 CHAPTER 5. WELCOME TO THE TIDYVERSE

72 63.39 25 303
75 63.05 25 309
80 61.62 25 323
71 60.92 25 301
78 60.69 25 319
79 60.28 25 321
77 60.07 25 315

�

5.4.5 slice_min() and slice_max()

The helpful dplyr functions slice_min() and slice_max() allow subsetting of dataframe

rows by minimum and maximum values in some column, respectively.

Example 5.9.

Loblolly |>
slice_max(height, n = 5)

Grouped Data: height ~ age | Seed
height age Seed

73 64.10 25 305
72 63.39 25 303
75 63.05 25 309
80 61.62 25 323
71 60.92 25 301

�

5.4.6 select()

The select() function allows one to select particular variables in a data frame.

Example 5.10.

For instance, here I select height from Loblolly.

Loblolly |>
select(height) |>
head()

height
1 4.51
15 10.89



5.4. DPLYR 129

29 28.72
43 41.74
57 52.70
71 60.92

�

The select() function can be used in more sophisticated ways by combining it with other

dplyr functions like starts_with() and ends_with(), or other Boolean operators.

Example 5.11.

He we select the height and age columns by calling for variable names that start with "h" or
end with "e".

Loblolly |>
select(starts_with("h"), ends_with("e")) |>
head(3)

height age
1 4.51 3
15 10.89 5
29 28.72 10

�

5.4.7 mutate()

The function mutate() creates new dataframe columns that are functions of existing variables.

Example 5.12.

Below we select the age and height columns using select(), convert height in feet to height

in meters using mutate(), plot the result as a side-task using the tee pipe, %T>% (note the use
of the . placeholder operator) (Fig 5.3), and then take the column means of age and height.
Note that by default, all columns from the previous pipe segment will be in the mutate()
output although all columns need not be explicitly mutated. Output columns can be specified

using the mutate() argument .keep.

library(magrittr) # to access tee pipe

Loblolly |>
select(c(age, height)) |>
mutate(height = height * 0.3048) %T>%
plot(.,ylab = "Height (m)", xlab = "Age (yrs)") |>
colMeans()



130 CHAPTER 5. WELCOME TO THE TIDYVERSE

age height
13.0000 9.8647

5 10 15 20 25

5
10

15
20

Age (yrs)

H
ei

gh
t (

m
)

Figure 5.3: Plot of loblolly pine height as a function of age, after converting height to meters.

In base R dialect we could use: “with(Loblolly, plot(age, height * 0.3048, ylab =
"Height (m)", xlab = "Age (yrs)")). This is quite a bit harder to decipher.

�

5.4.8 across()

The dplyr function across() allows extensions similar to those in apply()wherein the same

function can be applied to all columns in the first argument of across(). Specifying the first
argument in across() as everything()would allow application of a function to all columns

in a dataframe.

Example 5.13.

Here we take the medians of the quantitative columns in Loblolly using across() and

summarize().

Loblolly |>
summarize(across(c(age, height), median))

age height
1 12.5 34

�



5.5. STRINGR 131

5.5 stringr

As evident in Section 4.3, use of regular expressions for matching, querying and substituting

strings can be confusing. The stringr package attempts to simplify some of these difficulties.

The stringr package uses processing tools from the package stringi (Gagolewski, 2022) for

pattern searching under a wide array of potential approaches. All stringr functions have the

prefix str_ and take a character string vector as the first argument.

Consider the vector of plant scientific names used to demonstrate string management in

Section 4.3.

names = c("Achillea millefolium", "Aster foliaceus",
"Elymus scribneri", "Erigeron rydbergii",
"Carex elynoides", "Carex paysonis",
"Taraxacum ceratophorum")

Example 5.14.

The function str_length() can be used to count the number of characters in a string.

str_length(names)

[1] 20 15 16 18 15 14 22

�

Example 5.15.

The function str_detect() tests for the presence or absence of a pattern in a string. Here I

test for presence of the genus Aster.

str_detect(names, "Aster")

[1] FALSE TRUE FALSE FALSE FALSE FALSE FALSE

Here are entries not containing Aster.

str_detect(names, "Aster", negate = TRUE)

[1] TRUE FALSE TRUE TRUE TRUE TRUE TRUE

�

Example 5.16.

Here we subset names using the function stringr::str_subset() to obtain species within

the genus Carex.



132 CHAPTER 5. WELCOME TO THE TIDYVERSE

str_subset(names, "Carex")

[1] "Carex elynoides" "Carex paysonis"

�

Example 5.17.

The function str_replace() is analogous to the base R function gsub(). It can be used to

replace text based on a pattern.

str_replace(names, "Carex", "C.")

[1] "Achillea millefolium" "Aster foliaceus"
[3] "Elymus scribneri" "Erigeron rydbergii"
[5] "C. elynoides" "C. paysonis"
[7] "Taraxacum ceratophorum"

�

Most stringr functions work with regular expressions (Section 4.3.6).

Example 5.18.

Here we count upper and lower case vowels with the function stringr::str_count() using
a pattern defined by the regex character class [AEIOUaeiou].

str_count(names, "[AEIOUaeiou]")

[1] 9 7 5 7 6 5 9

and use stringr::str_extract() to extract strings nine alphanumeric characters long, and

then sort the strings with a pipe.

str_extract(names, "[[:alnum:]]{9}") |>
sort()

[1] "elynoides" "foliaceus" "millefoli" "rydbergii" "scribneri" "Taraxacum"

�

5.6 lubridate

Base R approaches for handling date-time data are described in Section 4.4. The package

lubridate (https://lubridate.tidyverse.org/) contains functions for simplifying and extending

some of these operations.

https://lubridate.tidyverse.org/


5.6. LUBRIDATE 133

Example 5.19.

As an example dataset, I will use the time series used to illustrate date-time classes in Section

4.4.

dates <- c("08/13/2019 04:00", "08/13/2019 06:30", "08/13/2019 09:00",
"08/13/2019 11:30", "08/13/2019 14:00", "08/13/2019 16:30",
"08/13/2019 19:00", "08/13/2019 21:30", "08/14/2019 00:00",
"08/14/2019 02:30", "08/14/2019 05:00", "08/14/2019 07:30",
"08/14/2019 10:00", "08/14/2019 12:30", "08/14/2019 15:00",
"08/14/2019 17:30", "08/14/2019 20:00", "08/14/2019 22:30",
"08/15/2019 01:00", "08/15/2019 03:30")

library(lubridate)

Wewill define the timezone to be timezone of our computer workstation.

tz <- Sys.timezone(location = TRUE)

The package lubridate contains data-time parsers that may be easier to use than the base

functions strptime and as.Date. For the current example, we note that the data are in

a month/day/year hour:minute format. So we can create a time series using the function

lubridate::mdy_hm.

date_lub <- mdy_hm(dates, tz = tz)
date_lub

[1] "2019-08-13 04:00:00 MDT" "2019-08-13 06:30:00 MDT"
[3] "2019-08-13 09:00:00 MDT" "2019-08-13 11:30:00 MDT"
[5] "2019-08-13 14:00:00 MDT" "2019-08-13 16:30:00 MDT"
[7] "2019-08-13 19:00:00 MDT" "2019-08-13 21:30:00 MDT"
[9] "2019-08-14 00:00:00 MDT" "2019-08-14 02:30:00 MDT"
[11] "2019-08-14 05:00:00 MDT" "2019-08-14 07:30:00 MDT"
[13] "2019-08-14 10:00:00 MDT" "2019-08-14 12:30:00 MDT"
[15] "2019-08-14 15:00:00 MDT" "2019-08-14 17:30:00 MDT"
[17] "2019-08-14 20:00:00 MDT" "2019-08-14 22:30:00 MDT"
[19] "2019-08-15 01:00:00 MDT" "2019-08-15 03:30:00 MDT"

Other lubridate parsers include ymd(), ymd_hms(), dmy(), dmy_hms(), and mdy(). The lubri-
date parsers can often handle mixed methods of data entry. From the ymd() documentation

we have the following example:

x <- c(20090101, "2009-01-02", "2009 01 03", "2009-1-4",
"2009-1, 5", "Created on 2009 1 6", "200901 !!! 07")

ymd(x)

[1] "2009-01-01" "2009-01-02" "2009-01-03" "2009-01-04" "2009-01-05"



134 CHAPTER 5. WELCOME TO THE TIDYVERSE

[6] "2009-01-06" "2009-01-07"

�

Lubridate also allows extended mathematical operations for its date-time objects with the

functions duration(), period(), and interval().

Example 5.20.

Duration functions include dseconds(), dminutes(), ddays(), and dmonths().

duration("12m", units = "seconds") # seconds in 1 year

[1] "31557600s (~1 years)"

dmonths(12)

[1] "31557600s (~1 years)"

date_lub[1]

[1] "2019-08-13 04:00:00 MDT"

date_lub[1] + ddays(1)

[1] "2019-08-14 04:00:00 MDT"

�

Example 5.21.

Periodic functions include seconds(), minutes(), hours(), and days().

days(12) + minutes(2) + seconds(3)

[1] "12d 0H 2M 3S"

date_lub[1]

[1] "2019-08-13 04:00:00 MDT"

date_lub[1] - days(12)

[1] "2019-08-01 04:00:00 MDT"

�

Example 5.22.

Interval functions include int_length(), int_start(), and int_end().



5.7. RESHAPE2 135

int <- interval(start = first(date_lub), end = last(date_lub))

int_length(int) |>
duration()

[1] "171000s (~1.98 days)"

�

5.7 reshape2

Tidyverse functions generally require that data are in a long table format. That is, data are

stored with columns containing all the values for a particular variable of interest. Unfortu-

nately, this format is not conventional formany scientific applications, particularly longitudinal

studies that follow experimental units over time. Thesewill often have awide table format. The

tidyverse reshape2 package contains several functions for converting dataframes from wide to

a long table formats, including the functions reshape2::melt() and tidyr::gather(). The
reshape2::melt.data.frame() function generates a value column based on data common-

alities of outcomes given in a variable or variables defined in the id argument. A remaining

column, if any, that captures these commonalities will be given the name variable. The names

of the value and variable output columns can be changed with the arguments value.name
and variable.name, respectively.

Example 5.23.

Consider the asbio::asthma dataset, which has a wide table format. The dataset documents

the effect of three respiratory treatments (measured as Forced Expiratory Volume in one

second (FEV1)) for 24 asthmatic patients over time (11H - 18H, i.e, hour 11 to hour 18). A

baseline measure of FEV1 (BASEFEV1) was also taken 11 hours before application of the

treatment.

data(asthma)
head(asthma)

PATIENT BASEFEV1 FEV11H FEV12H FEV13H FEV14H FEV15H FEV16H FEV17H FEV18H
1 201 2.46 2.68 2.76 2.50 2.30 2.14 2.40 2.33 2.20
2 202 3.50 3.95 3.65 2.93 2.53 3.04 3.37 3.14 2.62
3 203 1.96 2.28 2.34 2.29 2.43 2.06 2.18 2.28 2.29
4 204 3.44 4.08 3.87 3.79 3.30 3.80 3.24 2.98 2.91
5 205 2.80 4.09 3.90 3.54 3.35 3.15 3.23 3.46 3.27
6 206 2.36 3.79 3.97 3.78 3.69 3.31 2.83 2.72 3.00

DRUG
1 a
2 a
3 a



136 CHAPTER 5. WELCOME TO THE TIDYVERSE

4 a
5 a
6 a

library(reshape2)
asthma.long <- asthma |> melt(id = c("DRUG", "PATIENT"),

value.name = "FEV1",
variable.name = "TIME")

# here I simplify the names in the TIME variable
asthma.long$TIME <- factor(asthma.long$TIME,

labels = c("BASE",
paste("H", 11:18, sep = "")))

head(asthma.long)

DRUG PATIENT TIME FEV1
1 a 201 BASE 2.46
2 a 202 BASE 3.50
3 a 203 BASE 1.96
4 a 204 BASE 3.44
5 a 205 BASE 2.80
6 a 206 BASE 2.36

In the code above, the function reshape2::melt() is used to convert to a long table format,

and time designations are simplified using the base function factor(). The factor() function
can be used to create a categorical variable with particular levels (Section 3.3), or to change

the names of levels. The latter application is used here.

�

Exercises

1. Create a tibble from the Downs dataframe shown below. The data comprise part of a

report summarizing Down’s syndrome cases in British Columbia, compiled by the British

Columbia Health Surveillance Registry (Geyer, 1991).

(a) Examine both the original Downs dataframe and the tibble representation of Downs
by printing them. Do we gain additional information from the tibble?

(b) Find the mean and variance of the Age column from the Downs dataset using pipes
and dpylr functions.

Downs <- data.frame(Age = c(17, 20.5, 21.5, 29.5, 30.5, 38.5, 39.5,
40.5, 44.5, 45.5, 47),

Births = c(13555, 22005, 23896, 15685, 13954,
4834, 3961, 2952, 596, 327, 249),

Cases = c(16, 22, 16, 9, 12, 15, 30, 31, 22, 11,



5.7. RESHAPE2 137

7)
)

2. Bring in the world.emissions dataset from package asbio.

(a) Using the forward pipe operator, |>, and filter() from dplyr, create a dataframe

of just US data.

(b) Using |>, filter(), and summarise(), find the first and last year of emissions data

for the US.

(c) Using |>, %T>%, filter(), mutate(), and plot(), plot per capita CO2 emissions

for the US by year (as an intermediate pipeline step) and find the maximum CO2
emission level. Hint: see Exercise 5.12.

(d) Using |> and filter() create a new dataframe called no.repeats that eliminates

rows with the entry "redundant" in the world.emissions$continent column.

(e) With the no.repeats dataframe and the functions group_by(), and summarise(),
get mean CO2 levels for each country over time.

(f) Using |>, group_by(), summarise() and slice_max(), identify the 10 countries

with the highest recorded cumulative CO2 emissions.

3. Consider the character vector omics below (Bonnin, 2021).

(a) Use stringr::str_detect() to test for strings with the pattern "genom".
(b) Using str_detect(), test for strings startingwith the pattern "genom" by using

an extended regular expression: ^genom in the str_detect() argument pattern
(see Section 4.3.6.1).

(c) Using str_detect(), test for strings endingwith the pattern "omics" by using an
extended regular expression (see Section 4.3.6.1).

(d) Using str_subset(), subset the string vector omics to string entries containing
the pattern "genom".

(e) Using str_replace(), replace the text "omics"with "ome".

omics <- c("genomics", "proteomics", "proteome",
"transcriptomics", "metagenomics", "metabolomics")

4. Consider the character vector times below, which has the format: day-month-year
hour:minute:second.
(a) Convert times into a lubridate date-time object using an appropriate lubridate

function.

(b) Add two days and seven seconds to each entry in time using lubridate::days.
(c) Using lubridate functions, find the difference, in seconds, between the beginning

and the end of the time series.

times <- c("12-12-2023 12:12:20",
"12-01-2021 01:12:40",
"15-10-2021 23:10:15",
"25-07-2022 13:09:45")



138 CHAPTER 5. WELCOME TO THE TIDYVERSE



Chapter 6

Base Graphics

”Mankind invented a system to cope with the fact that we are so intrinsically lousy

at manipulating numbers. It’s called the graph.”

- Charlie Munger, businessman and philanthropist

6.1 Introduction

An important feature ofR is its capacity to create publication-quality graphicswith tremendous

user flexibility. Generally speaking, R graphics are non-interactive and changes to plots require

the creation of entirely new static plots. This may feel like a major departure for those used to

point-and-click graphics, characteristic of software like Excelr and SigmaPlotr.

There are two general graphics approaches in R: base graphics and grid graphics (Murrell,

2019). Base graphics are applied using the R distribution package graphics, whereas the

grid graphics system relies on low level facilities in the R distributed grid package, which are

generally implemented via high level functions in other packages. The base and grid graphics

systems generally do not interact well, although both rely on the distributed grDevices package

which provides the fundamental infrastructure for R graphics, including graphical devices.

Both base and grid systems follow the painters model in which later output obscures earlier

overlapping output.

The base graphics system is the focus of this chapter. The grid system, and its most popular

adherent, the package ggplot2, is described in Chapter 7.

6.2 Simple Base Graphics Examples

The base graphics system allows creation of a wide variety of plots for single variables and

multiple variables (see Figs 6.1 and 6.2, respectively). Approaches for making many of these

example plots are elaborated later in this chapter.

139



140 CHAPTER 6. BASE GRAPHICS

plot(num) plot(tab) barplot() or plot(fac)

pie(num)
dotchart(num)

boxplot(num)

rp

F
re

qu
en

cy

hist(num)                       stripchart() or plot(~num)

  0.0 | 7
  0.1 | 012
  0.2 | 8
  0.3 | 014
  0.4 | 0013
  0.5 | 01129
  0.6 | 005
  0.7 | 00048
  0.8 | 9

stem(num)

Figure 6.1: Base graphics approaches for single variables. Figure follows Murrell (2019).

Classes of plotted objects are distinguished by name and color in main headings: num =

numeric, tab = table, fac = factor. By row, from left to right, graphics are: 1) a scatterplot

created by applying the function plot() to a vector of class numeric, 2) the plot() function
applied to a one-dimensional object of class table, resulting in a distributional plot, 3) a barplot,

useful for comparing categorical outcomes, 4) a *pie chart*, 5) a extitdotchart, which provides

a dot variant of a bar plot), 6) a extitboxplot, i.e., the interquartile range (hinges) and whiskers

delimiting outliers, 7) a histogram (the most common graphical distributional summary), 8) a

stripchart, i.e., a one dimensional scatter plot that provides a horizontal view of distributional

outcomes, and 9) a stem chart.



6.2. SIMPLE BASE GRAPHICS EXAMPLES 141

plot(num, num)

n

n

                   smoothScatter(mat )

n

n

                  sunflowerplot(mat)

n

n

plot(fac, num)

n

n

barplot(mat)

n

n

barplot(mat, beside = T)

1

2

n

n

dotchart(mat)

n

n

plot(num, fac)

n

n

spineplot() or plot(fac, fac)

Figure 6.2: Base graphics approaches for consideringmultiple variables. Figure followsMurrell

(2019). Classes of plotted objects are distinguished by name and color in main headings: num

= numeric, mat = matrix, fac = factor. By row, from left to right, graphics are: 1) a scatterplot

based on two quantitative variables, 2) a scatterplot with smoothed densities, 3) a sunflower

plot, which uses special symbols to indicate overplotting of points, 4) a boxplot based on a factor

(with two levels) and a numeric variable, 5) and 6) stacked and beside barplots of matrices,

7) a dotchart, 8) a stripchart, based on two numeric variables, and 9) a spineplot, a special

cases of a extitmosaic plot (obtained using mosaicplot()), representing a generalization of a

stacked (or highlighted) bar plot.



142 CHAPTER 6. BASE GRAPHICS

6.2.1 plot()

The workhorse of base graphics is the function plot(). From Figs 6.1 and 6.2 it is evident that

plot() can be used in a number of different ways, depending on the characteristics of data

being plotted. For example, if data are two numeric vectors, then a conventional scatterplot

is created. However, if the first two arguments in plot() call a numerical vector and a factor

vector (in that order), then a boxplot is created, and if the first two arguments in plot() call a
factor vector and a numeric vector (in that order), then a stripchart is created. Further, plotting

methods for particular classes of objects can be designed that can be implemented by calling

plot(). For instance, the dendrogram in Fig 6.3 was created using a plotting method called

plot.agnes(), designed for objects of class agnes1. However, the function can be run using a

generic call to plot(). See Ch 8 for additional details on plotting methods for R classes.

library(cluster)
aa.ga <- agnes(animals, method = "average")
plot(aa.ga, sub = "", main = "", which.plots = 2, xlab = "")

an
t

lo
b

fr
o

he
r

liz sa
l

be
e fly

cp
l

sp
i

ca
t

ch
i

m
an

co
w lio ra
b

el
e

w
ha

du
c

ea
g

0.
0

0.
5

1.
0

1.
5

H
ei

gh
t

Figure 6.3: Dendrogram of an average linkage classification of animals based on six variables:

warm vs. cold blooded, ability to fly, vertebrate or invertebrate, whether or not the animal is

endangered, whether or not the animal lives in groups, and whether or not the animal has hair.

The plotting function used, plot.agnes(), is called using the generic name plot().

By default, the function plot() creates a projection at user defined Cartesian coordinates.

Under this usage plot() has only two required arguments.

• x defines the x-coordinate values.
• y defines the y-coordinate values.

If coordinates for only one dimension, x are supplied, then x is plotted on the vertical axis

against the series 1 ∶ 𝑛, where 𝑛 is the number of points in x. A coordinate system can also be

supplied to the argument x in the form of a formula, list, matrix, or dataframe.

Important optional arguments include the following:

1An object class resulting from hierarchical agglomerative cluster analyses produced by the function

cluster::agnes.



6.2. SIMPLE BASE GRAPHICS EXAMPLES 143

• pch specifies the symbol type(s), i.e., the plotting character(s) to be used.

• col defines the color(s) to be used with the symbols.

• cex defines the size (character expansion) of the plot symbols and text.

• xlab and ylab allow the user to specify the x and y-axis labels.

• type allows the user to define the type of graph to be drawn. Possible types are "p"
for scatterplot points (the default), "l" for a line plot, "b" for both, "c" for the line

component of "b", "o" for overplotted, "h" for ‘histogram’ like vertical lines (see middle

plot in top row of Fig 6.1), "s" for stair steps, and n" for no plotting.

Example 6.1.

We can see some symbol and color alternatives by calling them in plot() (Fig 6.4).

1 plot(1:20, 1:20, pch = 1:20, col = 1:20,
2 ylab ="Symbol number",
3 xlab = "Color number",
4 cex = 1.6, cex.lab = 1.1, cex.axis = 1.1)

5 10 15 20

5
10

15
20

Color number

S
ym

bo
l n

um
be

r

Figure 6.4: Some symbol and color plotting possibilities in plot().



144 CHAPTER 6. BASE GRAPHICS

In line one from the code above, the x and y coordinates are both sequences of numbers from

1 to 20 obtained from the command 1:20. I varied symbol colors and plotting characters

(col and pch, respectively) using 1:20 as well. Thus, the combination col = 1 and pch = 1
results in a black open circle, whereas the combination col = 20, pch = 20 results in a blue

filled circle. Note that we need to enclose the axis names in quotations for R to recognize them
as text. Symbol numbers 21-26 allow background color specification using the argument bg.
Many other symbol types are also possible.

�

6.3 Graphical Devices

Graphics inR are createdwithin graphics devices, encoded in the package grDevices. These vary

with respect to storage modes, display modes, available typefaces, and other characteristics.

In a basic R download, six graphics devices will be available:

• windows() is available for Windows releases of R. Provides on-screen rendering of

graphics (outside of RStudio)2, and creates Windows metafile graphics files.

• pdf() renders graphics into .pdf files.
• postscript() renders graphics into PostScript, .ps, graphics files.
• xfig() renders graphics files using the Xfig graphics file format.

• bitmap() renders graphics into bitmap graphics files It requires the open source soft-

ware ghostscript.

• piktex()Writes TeX/PicTeX graphics commands to a file and is of historical interest

only.

A number of other graphics devices also exist, although they may return a warning if Rwas

not compiled to use them upon installation.

• cairo_pdf(), cairo_ps() and svg() are PDF, PostScript SVG (Scalar Vector Graphics)

devices based on the open source Cairo graphics.

• bmp(), jpeg(), png(), and tiff() render graphics as .bmp, .jpg, .png, and .tif bitmap

files, respectively.

• X11() is the graphics device for the X11 windowing system, and is commonly used in

Unix-alike operating systems, including MacOS.

• quartz() is only functional on MacOS and supports plotting to the screen (default) and

to various graphics file formats. The device requires the open source software XQuartz

for rendering some R graphical user interfaces (see Ch 11).

Multiple devices (currently up to 63) may exist simultaneously in an Rwork session, although

there will only be one active device. To find the current (active) graphics device can type

dev.cur(). I get:

2RStudio has its own native on-screen graphics device. A non RStudio graphics device can be opened (within

RStudio) using dev.new(RStudioGD = FALSE).

https://www.ghostscript.com/
https://www.cairographics.org/
https://www.xquartz.org/


6.4. PAR() 145

dev.cur()

pdf
2

R tells me there are two devices open. The current device is a Windows device. The second

device is the so-called “null device.” The null device is always open but only serves as a

placeholder. Any attempt to use it will open a new device in R. Occasionally, on purpose or by

accident, all graphics devices (except the null device) may become turned off. A new active

graphics device can be created at any time by typing:

dev.new()

One can close the current (active) device using:

dev.off()

The active device can be changed using the function dev.set(). For instance, if there were
three or more accessible devices, and one wished to define device three as the active device,

one could type:

dev.set(3)

It is possible to scroll through graphics devices using keyboard shortcuts. Specifically, let 𝑛 be

the current device number, then the combination Ctrl + Alt + F11 (Windows or Linux) or Cmd

+ Alt + F11 (Mac) shows device 𝑛 − 1, whereas Ctrl + Alt + F12 (Windows or Linux) or Cmd +

Alt + F12 (Mac) shows device 𝑛 + 1.

6.4 par()

Parameters for a graphics device (which may contain several plots) can be accessed and

modified using the function par(). Below are important arguments for par(). Some of these

can also be specified as arguments in plot(), with different results.

• bg gives the background color for the graphical device. When used in plot() it gives
the background color of plotting symbols.

• bty is the box-type to be drawn around the plots. If bty is one of "o" (the default), "l",
"7", "c", "u", or "]" the resulting box resembles the corresponding upper case letter.

The value "n" suppresses the box.
• fg gives the foreground color.

• font is an integer that specifies the font typeface. 1 corresponds to regular text (the

default), 2 to bold face, 3 to italic and 4 to bold italic.

• las is the style of axis labels: 0 always parallel to the axis (default), 1 always horizontal,
2 always perpendicular to the axis, 3 always vertical.

• marwill have the form c(bottom, left, top, right) and gives the number of lines

of margin to be specified on the four sides of the plot. The default is c(5, 4, 4, 2) +



146 CHAPTER 6. BASE GRAPHICS

0.1.
• mfrowwill have the form c(number of rows, number of columns) and the number

and position of plots in a graphical layout. Multiple graphs can also be placed into a

graphical device with additional control over plot designation to multiple elements in a

row and column configuration, using the function layout().
• oma specifies the outer margins of a graphical device, given multiple plots, using a vector

using a matrix of the form: c(bottom, left, top, right).
• usrwill have the form c(x1, x2, y1, y2) giving the extremes of the user coordinates

of the plotting region.

When setting graphical parameters, it is good practice to revert back to the original parameter

values. Assume that I want to background of the graphics device to be black. To set this I would

type:

old.par <- par(no.readonly = TRUE) # save default, for resetting...
par(bg = "black") # change background parameter

To return to the default settings for background I would type:

par(old.par)

Defaults will also be reset by closing the current graphics device, or by opening a new device.

For instance, using dev.new().

Other fundamental properties of the default graphics device, such as device height, width and

pointsize, can be adjusted using the dev.new() function. For instance, to create a graphical
device 9 inches wide, and 4 inches high, I would type:

dev.new(width = 9, height = 4)

Example 6.2.

Fig 6.5 shows an example of applying background and foreground colors using the bg and fg
arguments in par(), respectively. Note also the specification of a bold font using the par()
argument font = 3, and expansion of all graphics parameters to slightly larger than their

original size, using cex = 1.1.

1 old.par <- par(no.readonly = TRUE)
2 par(bg = "black", fg = "white", font = 3, cex = 1.1)
3 plot(1:10, 1:10, xlab = "x", ylab = "y",
4 col.lab = "white")
5 par(old.par)



6.4. PAR() 147

2 4 6 8 10

2
4

6
8

10

x

y

Figure 6.5: Use of par() to change background and foreground graphical parameters.

�

Example 6.3.

Fig 6.6 shows how one can place multiple graphs into a single graphical device using the mfrow
argument in par(), and control figure margins using the par() argument mar (line two). It
also shows some basic plot types resulting from the type argument in plot() (lines 4-7).

1 old.par <- par(no.readonly = TRUE)
2 par(mfrow = c(2,2), cex = 1.1, mar = c(4,4,1,1))
3 x <- 1:10; y <- sort(rnorm(10))
4 plot(x, y)
5 plot(x, y, type = "l")
6 plot(x, y, type = "o")
7 plot(x, y, type = "h")
8 par(old.par)



148 CHAPTER 6. BASE GRAPHICS

2 4 6 8 10

0.
0

1.
5

x

y
2 4 6 8 10

0.
0

1.
5

x

y

2 4 6 8 10

0.
0

1.
5

x

y

2 4 6 8 10

0.
0

1.
5

x

y
Figure 6.6: Use of par() to place multiple graphs into a single graphical device. The figure also

demonstrates basic plot types, specified using the plot() argument type. Clockwise from the

top-left these are: 1) a point plot (scatterplot), 2) a line plot, 3) a histogram-like (high density

line) plot, and 4) a plot with a both points and lines.

�

6.5 Exporting Graphics

To export R graphics, one can generally copy snapshots to a clipboard using pull down menus

on graphical device. These can then be pasted into programs (e.g., word processors) as bitmaps

(a spatially mapped array of bits) or metafiles, a generic term for a file format that can store

multiple types of (generally graphical) data.

To create the best possible graphs, however, one should save device output using graphical

device functions.

For instance, to save a graphics device image as a pdf under the file name example.pdf in the

working directory I would type:

pdf(file ="example.pdf")

I would then make the plot, for instance

plot(1:10)

The plot will not be shown because the png() graphical device is engaged. As a final step I

close the device.



6.6. TEXT(), POINTS(), AND LINES() 149

dev.off()

The graphics file will now be contained in the working directory. If the file argument is

unspecified, pdf()will save a file called Rplot.pdf.

By default, the bitmap graphics formats: BMP, JPEG, PNG, and TIFF, have a width and height

of 480 pixels, and a “large” point size (1/72 inch) in R. This results in a rather coarse 72 ppi

(72 points per inch) image resolution. However, changing the res (resolution) argument in a

graphical device function without changing the pointsize, or height and width arguments will

generally result in unusable figures.

Because 500 ≈ 72 ⋅ 6, one can generate a TIFF with greater than 400 ppi TIFF called fig1.tiff
by typing:

tiff("fig1.tiff", res = 72 * 6, height = 480 * 6, width = 480 * 6)
plot(1:10)
dev.off()

With respect to graphical formats, documentation in the grDevices package states:

“The PNG format is lossless3 and is best for line diagrams and blocks of color. The

JPEG format is lossy4, but may be useful for image plots, for example. The BMP for-

mat is standard on Windows, and supported by most viewers elsewhere. TIFF is a

meta-format: the default format written by the default format tiff(compression
= none) is lossless and stores RGB values uncompressed. Such files are widely

accepted, which is their main virtue over PNG.”

The svg(), cairo_pdf() and cairo_ps() graphical devices apply cairographics and will

recognize a largenumberof symbols and fonts not available for document and image generation

in the default setting of the Windows PostScript and PDF devices.

6.6 text(), points(), and lines()

The functions text(), points() and lines() can be used to overlay text, points and lines in

a plot, respectively. As with plot() the first two arguments of these functions are the x and y

coordinates for the plotted entities. Other arguments concern characteristics of the plotted

items. For instance, to plot the text "example"with in an existing plot, at plot coordinates x =
0, y = 0, with a large character expansion, I could type:

plot(-1:1, -1:1, type = "n", axes = F, xlab = "", ylab = "") # empty plot
text(x = 0, y = 0, "example", cex = 9)

The result is shown in Fig 6.7.

3Lossless entails data compression without loss of information.
4Lossy refers to data compression in which unnecessary information is discarded.



150 CHAPTER 6. BASE GRAPHICS

example
Figure 6.7: Empty plot (even axes are suppressed) with text overlain.

The function paste() can be used to concatenate elements from text strings in plots or output.

For instance, try:

a <- c("a", "b", "c")
b <- c("d", "e", "f")
c <- paste(a, b)
c

[1] "a d" "b e" "c f"

Which can be placed in a plot (Fig 6.8) using text().

plot(-1:1, -1:1, type = "n", axes = F, xlab = "", ylab = "")
text(x = 0, y = 0, paste(c, collapse = ' '), cex = 2)

a d b e c f
Figure 6.8: An empty plot with text overlain. Note the use paste(c, collapse = ' ') to
collapse the string vector c into a single entity.

To plot a dashed line between the points (0, 0) and (3, 2), I would type:

lines(x = c(0, 3), y = c(0, 2), lty = 2)

or

points(x = c(0, 3), y = c(0, 2), lty = 2, type = "l")

The result is shown in Fig 6.9.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

1.
0

2.
0

3.
0

Figure 6.9: Plot with dashed line overlain.



6.6. TEXT(), POINTS(), AND LINES() 151

To place a large, blue, triangle with red outline at the point (1, 1), of an existing plot I would

type:

points(x = 0, y = 1, pch = 24, col = 2, bg = 4, cex = 8)

The resulting plot is shown in Fig 6.10.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

1.
0

2.
0

3.
0

Figure 6.10: Plot with point overlain.

6.6.1 Plotting Mathematical Text

R has useful functions for the plotting of mathematical expressions. These include the Greek

letters, mathematical operators, italicization, and sub- and super-scripts. mathematical text

is generally called as an expression in the text argument in the functions text() or mtext().
For example, the formula for the sample variance is overlain in Fig 6.11.

plot(-1:1, -1:1, type = "n", axes = F, xlab = "", ylab = "")
varexp <- expression(over(sum(paste("(",italic(x[i] - bar(x)),")"^2),

italic(i)==1, italic(n)),(italic(n) - 1)))

text(x = 0, y = 0, varexp, cex = 3)

∑
i=1

n
(xi − x)2

(n − 1)
Figure 6.11: Empty plot with formula for the sample variance overlain. Type ?plotmath for
more information.



152 CHAPTER 6. BASE GRAPHICS

6.6.2 mtext()

To place text in the margin of a plot we can use the function mtext(). As its first argument the

mtext() function requires a character string to be written into the plot. The 2nd argument,

side defines the plot margin to be written on: 1 = bottom, 2 =left, 3 = top, 4 = right. For

instance, to place the text "Axis 2" on the right hand axis of an existing plot, I would type:

mtext("Axis 2", 4)

6.7 Geometric Shapes

Geometric shapes can be drawn using a number of functions including rect() (which draws

rectangles) and polygon() (which draws other polygons) based on user-supplied vertices.

For instance, to place a purple rectangle with vertices at (1, 1), (1, 2), (2, 2), and (2, 1), in an

existing plot, I would type:

rect(xleft = 0, ybottom = 1, xright = 2, ytop = 2, col = 6)

See Fig 6.12.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

1.
0

2.
0

3.
0

Figure 6.12: Plot with rectangle overlain.

6.8 axis()

The function axis() can be used to create new axes on a plot or to customize axis characteris-

tics. Its first argument (side) specifies the side of the plot that the new axis will occupy 1 =
bottom, 2 =left, 3 = top, 4 = right.

For instance, to create a right hand axis I would type:

axis(4)

Other important axis() arguments include a vector of axis labels (argument labels), and
the locations of labels (argument at).



6.9. FONT TYPEFACES 153

Example 6.4.

Here I create customized axes with rotated, 𝑥-axis labels, using axis() and text() (Fig 6.13).

1 plot(1:3, type = "n", axes = F, xlab = "", ylab = "")
2 axis(side = 2, at = 1:3, col = "red")
3 axis(side = 1, at = 1:3, labels = FALSE, col = "blue")
4 text(1:3, rep(.65, 3), c("Label 1", "Label 2", "Label 3"),
5 srt = 50, xpd = TRUE)

1
2

3

La
be

l 1

La
be

l 2

La
be

l 3

Figure 6.13: Modifying axes with axis().

The argument srt = 50 (Line 5) rotates the text 50 degrees (srt cannot be specified in

mtext() or axis(), hence the use of text() here). The specification xpd = TRUE in text()
(Line 5) allows text printing to extend to the plot axis margins.

�

6.9 Font Typefaces

Font typefaces can be changed using a number of graphical functions, including par(), via
the argument family. The general typeface families: "serif", "mono", and "sans", and the

Hershey family of fonts (type ?Hershey for more information) are transferable across all

graphics devices employed in R. To change the font in a graphical device from the default sans

serif (similar to Arial) to serif (similar to Times New Roman) one could type:

par(family = "serif")

To use a Courier-type monospace font one would use.

par(family = "mono")

http://en.wikipedia.org/wiki/Hershey_font


154 CHAPTER 6. BASE GRAPHICS

Many other typeface families are possible, although they may not be transportable to all

graphical devices and graphical storage formats.

Example 6.5.

In the code below I bring in a large number of conventional font families using a function from

the Foundational and Applied Statistics for R website. These typefaces (and many others) will

typically be available on Windows platformmachines, although not all will be supported by

non-Windows graphics devices. The result can be seen in Figure 6.14 which displays text from

ninety-nine Windows typefaces.

1 source(url("http://www2.cose.isu.edu/~ahoken/book/win_fonts.R"))
2 png("fonts.png", res = 72 * 6, height = 480 * 6, width = 480 * 6)
3 x <- rep(c(2.8, 6.4, 9.6), each = 33)
4 y <- rep(seq(10, 0.25, by = -.2965), 3)
5 font.type <- paste(rep("f", length(fonts)), 1:length(fonts), sep = "")
6 par(mar = c(0.1,0.1,0.1,0.1), cex = 1.05)
7 plot(0:10, type = "n", xaxt= "n", yaxt = "n", xlab = "", ylab = "",
8 bty = "n")
9

10 for(i in 1:length(fonts)){
11 text(x[i],y[i], labels=fonts[i] , family = font.type[i])
12 }
13 dev.off()

http://http//www2.cose.isu.edu/~ahoken/book/


6.9. FONT TYPEFACES 155

Figure 6.14: Examples of font families that can be used in R graphics.

Note that on line 2 in the code above, I use the function png() to generate a high resolution
.png graphical file. Thus, running the entirety of the preceding code chunk will create the

image file fonts.tiff in your working directory. To save myself from typing an inordinate

amount of code, I use a for loop (see Ch 8) to place the fonts one at a time in the graphics device

(lines 9-11). Output from closing the graphical device is shown on line 14-15.

Importantly, the typefaces imported from the first line of code in the chunk above will now

be available for graphics functions using the Windows graphical device. To see the first six

available Windows fonts one can type:

head(windowsFonts())

$serif
[1] "TT Times New Roman"

$sans



156 CHAPTER 6. BASE GRAPHICS

[1] "TT Arial"

$mono
[1] "TT Courier New"

$f1
[1] "Agency FB"

$f2
[1] "Albany AMT"

$f3
[1] "ALGERIAN"

Similarly, one can see the available fonts for PostScript and PDF graphics devices using:

head(names(pdfFonts()))

[1] "serif" "sans" "mono" "AvantGarde" "Bookman"
[6] "Courier"

�

6.10 Colors

An enormous number of color choices for R graphics are possible and these can be specified

in at least six different ways.

• First, we can specify colors with integers as I did in Figure 6.4. Additional varieties

can be obtained by drawing color elements from the function colors() using

colors()[number] (Fig 6.15).

e <- expand.grid(1:20, 1:32)
plot(e[,1], e[,2], bg = colors()[1:640], pch = 22, cex = 2.5, xaxt = "n",

yaxt = "n", xlab = "", ylab = "")
text(e[,1], e[,2], 1:640, cex = .4)



6.10. COLORS 157

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260

261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280

281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300

301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340

341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360

361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380

381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400

401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420

421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440

441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460

461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480

481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500

501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520

521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540

541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560

561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580

581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600

601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620

621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640

Figure 6.15: Color choices from colors()

The function expand.grid() creates a dataframe from all combinations of user-supplied

supplied vectors. Note that these combinations are used as coordinates in plot().

• Second, we can specify colors using actual color names, e.g., "white", "red",
"yellow". For a visual display of essentially all the available named colors in R type:

example(colors).

• Third, we can define colors by requesting red green and blue (RGB) color intensities,

along with transparency, using the function rgb() (Fig 6.16). Usable light intensities
can be made to vary individually from 0 to 255 (i.e., within an 8 bit format). Thus, there

are 2554 = 4, 228, 250, 625 possible rgb() color combinations. By default, red green,
blue, and alpha (transparency) arguments in rgb() are defined to be in (0, 1).

1 plot(1:10, cex = 15, pch = 19, xlab = "", ylab = "",
2 col = rgb(red = rep(0.2,10), green = rep(0.5,10),
3 blue = rep(0.8,10),



158 CHAPTER 6. BASE GRAPHICS

4 alpha = seq(0.05,1, length = 10)), axes = F)
5 box()

Figure 6.16: Demonstration of rgb(), emphasizing changes in transparency.

Note the use of box() on line 5, which places a box around the plot.

• Fourth, similar to rgb(), we can specify colors using the function hcl()which controls

hues, chroma, and luminescence and transparency (see Fig 6.17).

• Fifth, we can define colors using hexadecimal codes5, e.g., blue = "#0000FF".

• Sixth, we can specify colors using palettes. Figure 6.17 shows six pie plots. Each pie

plot uses a different pre-defined color palette. Each pie slice from each pie represents a

distinct segment of a distinct palette.

1 layout(matrix(seq(1,6),3,2))
2 par(mar=c(1,1,1,1))
3 pie(rep(1,12), col = rainbow(12), main = "Rainbow colors")
4 pie(rep(1,12), col = heat.colors(12), main = "Heat colors")
5 pie(rep(1,12), col = topo.colors(12), main = "Topographic colors")
6 pie(rep(1,12), col = gray(seq(0,1,1/12)), main = "Gray colors")
7 pie(rep(1,12), col = hcl(h=seq(180,0, length=12)),
8 main = "Cols from hcl hue")

5A data coding system that uses 16 symbols: the numbers 1-9, and the letters A-F. Hexadecimals are primarily

used to provide a more intuitive representation of binary-coded values (see Ch 12).



6.10. COLORS 159

9 pie(rep(1,12), col = hcl(h=seq(360,180,length=12)),
10 main = "Cols from chroma")

1

2

34

5

6

7

8

9 10

11

12

Rainbow colors

1

2

34

5

6

7

8

9 10

11

12

Heat colors

1

2

34

5

6

7

8

9 10

11

12

Topographic colors

1

2

34

5

6

7

8

9 10

11

12

Gray colors

1

2

34

5

6

7

8

9 10

11

12

Cols from hcl hue

1

2

34

5

6

7

8

9 10

11

12

Cols from chroma

Figure 6.17: Examples of color palettes in R. Numbers do not correspond to actual color type

designations.

Note that the functions rainbow(), heat.colors(), topo.colors() (Lines 3-6) only require
an integer specification requesting the number of colors within a particular palette. For

instance



160 CHAPTER 6. BASE GRAPHICS

rainbow(5)

[1] "#FF0000" "#CCFF00" "#00FF66" "#0066FF" "#CC00FF"

Note that the colors in rainbow() are given in a hexidecimal format.

The function palette() can be used to check and define a number of useful palettes. Colors

in the current palette can be obtained by typing:

palette()

[1] "black" "#DF536B" "#61D04F" "#2297E6" "#28E2E5" "#CD0BBC" "#F5C710"
[8] "gray62"

A list of predefined palettes in palette() can be obtained by typing:

palette.pals()

[1] "R3" "R4" "ggplot2"
[4] "Okabe-Ito" "Accent" "Dark 2"
[7] "Paired" "Pastel 1" "Pastel 2"
[10] "Set 1" "Set 2" "Set 3"
[13] "Tableau 10" "Classic Tableau" "Polychrome 36"
[16] "Alphabet"

To define the current palette to be the one used by the ggplot2 package (Ch 7), I could type:

palette("ggplot2").

A large number of useful pre-defined palettes (including color-blind-safe palettes) can be

obtained using the package RColorBrewer (Fig 6.18).

library(RColorBrewer)
display.brewer.all(n = 7, colorblindFriendly = TRUE)



6.10. COLORS 161

BrBG
PiYG

PRGn
PuOr
RdBu

RdYlBu

Dark2
Paired

Set2

Blues
BuGn
BuPu
GnBu

Greens
Greys

Oranges
OrRd
PuBu

PuBuGn
PuRd

Purples
RdPu
Reds
YlGn

YlGnBu
YlOrBr

YlOrRd

Figure 6.18: RColorBrewer color-blind-safe, seven category palettes. Top palettes are so-called

’sequential’ palettes, middle palettes are ’qualitative’, and bottom palettes are ’divergent’.

Here are the hexadecimal names for the “Set2” palette chunks in Figure 6.18.

brewer.pal(7, "Set2")

[1] "#66C2A5" "#FC8D62" "#8DA0CB" "#E78AC3" "#A6D854" "#FFD92F" "#E5C494"

Customized palettes can be generated using the colorRamp() function which returns

functions that “interpolate a set of given colors to create new color palettes.” Important

colorRampPaltette() arguments include: two required arguments.

• colors defines colors to interpolate.
• bias a positive number that controls distinctions among interpolated colors. Larger

values indicated greater differences.

• space one of "RGB" or "Lab", indicating whether RGB or CIELAB6 color spaces are to be

used in interpolations.

6The CIELAB color space is defined by three values: L* for perceptual lightness and a* and b* for the four
unique colors of human vision: red, green, blue and yellow. (Schanda, 2007). The CIELAB space is intended to be

perceptually uniform. CIELAB and several other colors spaces are included in the encompassing CIECAM02 color

space (Wikipedia, 2024b).



162 CHAPTER 6. BASE GRAPHICS

Here I generate and plot a 15 color palette interpolated from the colors red and blue (Fig 6.19).

1 crp <- colorRampPalette(colors = c("red", "blue"))(15)
2 plot(1:15, pch = 19, cex = 5, col = crp, axes = F, xlab = "", ylab = "")
3 box()

Figure 6.19: Color palette generated by the function colorRampPalette().

The function box() (Line 3) places a box around the figure whose axes and axis labels I have

intentionally omitted. There are a number of packages for the generation of customized

palettes. My current favorite is colorspace and its interactive function hclwizard(), which
generates the shiny GUI (Ch 11) shown in Fig 6.20.



6.11. SCATTERPLOTS 163

Figure 6.20: A GUI for constructed customized palettes generating by the function

colorspace::hclwizard().

6.11 Scatterplots

Scatterplots project points at the intersection of paired observations describing two quantita-

tive variables. Thus, scatterplots are often presented in conjunction with simple regression

analyses (Aho, 2014).

Example 6.6.

As an example of scatterplot usage we will use the Loblolly dataset in the package datasets.

Figure 6.21 allows visualization of the relationship of loblolly pine tree age and tree height.

with(Loblolly, plot(age, height))



164 CHAPTER 6. BASE GRAPHICS

5 10 15 20 25

10
20

30
40

50
60

age

he
ig

ht

Figure 6.21: Scatterplot of height and age from the Loblolly pine tree dataset.

Now let’s fit a simple linear regression for loblolly pine height as a function of age. A regression

line will show the best possible linear fit for a response variable as a function of an quantitative

explanatory variable (Aho, 2014). The R function for a linear model is lm(). It encompasses

and allows a huge number of statistical procedures, including regression (see Chs. 9-11 in

(Aho, 2014)). We have:

ha.lm <- lm(height ~ age, data = Loblolly)

Note that in the first argument of lm()we define height to be a function of age using the tilde
operator. Objects of class lm have their ownsummary function. This can be called by simply

typing:

summary(ha.lm)

Call:
lm(formula = height ~ age, data = Loblolly)

Residuals:
Min 1Q Median 3Q Max

-7.021 -2.167 -0.439 2.054 6.855

Coefficients:
Estimate Std. Error t value Pr(>|t|)



6.11. SCATTERPLOTS 165

(Intercept) -1.3124 0.6218 -2.11 0.038 *
age 2.5905 0.0409 63.27 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.95 on 82 degrees of freedom
Multiple R-squared: 0.98, Adjusted R-squared: 0.98
F-statistic: 4e+03 on 1 and 82 DF, p-value: <2e-16

The output shows us the Y-intercept, -1.31240, and slope, 2.59052, of the fitted regression

line, and results from null hypothesis tests, along with a lot of other information.

The abline() function allows the plotting of a line over an existing plot. The first two argu-

ments for abline() are the Y-intercept and slope (Fig 6.22).

with(Loblolly, plot(age,height, pch=2, col=3))
abline(-1.312396, 2.590523)

5 10 15 20 25

10
20

30
40

50
60

age

he
ig

ht

Figure 6.22: Scatterplot with fit overlain.

Note that we could have gotten the same result using abline(ha.lm).

Finally, we can overlay a 95% confidence interval for the true regression fitted value (see Aho

(2014), Ch 9) using the function predict.lm() (Fig 6.23)



166 CHAPTER 6. BASE GRAPHICS

1 ci <- predict(ha.lm, interval = "confidence")
2

3 o <- order(Loblolly$age)
4 ageo <- Loblolly$age[o]
5 cio <- ci[o,]
6

7 with(Loblolly, plot(age, height, pch=19, col=1))
8 abline(-1.312396, 2.590523)
9 points(ageo, cio[,2], type = "l", col = "gray") # lower CI bound

10 points(ageo, cio[,3], type = "l", col = "gray") # upper CI bound

5 10 15 20 25

10
20

30
40

50
60

age

he
ig

ht

Figure 6.23: Scatterplot with confidence interval for the true mean of 𝑦 given 𝑥, overlain.

The object ci, created on Line 1, is a dataframe containing fits, and corresponding lower and

upper confidence interval bounds. The ordering of 𝑥-axis values is established on Line 3

to allow creation of lines that look like functions of 𝑥. This ordering is applied to Cartesian

coordinates on Lines 4-5.

�

6.12 Transformations

Importantly, plot() allows straightforward application of log transformations to axes. For

instance, to apply a log𝑒 transformation to the 𝑥-axis or 𝑦-axis I could use log = "x" or log



6.13. MULTIPLE PLOTS 167

= "y", respectively (Fig 6.24).

with(Loblolly, plot(age, height, log = "y"))

5 10 15 20 25

5
10

20
50

age

he
ig

ht

Figure 6.24: Graphical log𝑒 transformation of the height axis from a scatterplot of the

Loblolly pine tree dataset.

6.13 Multiple Plots

As shown earlier, multiple graphs can be placed in a graphics device using the mfrow or

mfcol argument in par(). In this section I will try to incorporate a number of the functions

discussed so far, including plot(), par(), mathematical formulae with text(), points(),
shapes rending with rect(), colors() axis(), and mtext().

Example 6.7.

The dataframe C.isotope in package asbio describes variations in 𝛿14C over time in La Jolla

California. The term 𝛿14𝐶 describes the ratio of carbon 14 to carbon 12 (14C is unstable, while
12C is a stable isotope of carbon) compared to a standard ratio. We will create a figure with

four subplots, with the following characteristics:

• It will have dimensions 8” x 7”.

• The outer margins (in number of lines) will be bottom = 0.1, left = 0.1, top = 0, right = 0.

• The inner margins (for each plot) will be bottom = 4, left = 4.4, top = 2, right = 2. The

plot margins will be light gray. We can specify gray gradations with the function.



168 CHAPTER 6. BASE GRAPHICS

• The first plot will show 𝛿14C as a function of date. The plotting area will be dark gray, i.e.,

colors()[181]. Points will be white circles with a black border.

• The second plot will be a line plot of atmospheric carbon as a function of date. It will

have a light green plotting area: colors()[363].
• The third plot will be a scatterplot of 𝛿14C as a function of atmospheric C. Points will be

yellow circles with a black border. The plotting area will be light red: colors()[580].
• The fourth plot will show the sample variance for atmospheric carbon in the time series.

It will have a custom (albeit meaningless) axis, created with axis(), with the labels: a,
b, c, and d. It will also have a horizontal axis label inserted with mtext().

The result is shown in Fig 6.25.

1 library(asbio)
2 data(C.isotope)
3 dev.new(height = 8, width = 7)
4 op <- par(mfrow = c(2, 2), oma = c(0.1, 0.1, 0, 0), mar = c(4, 4.4, 2, 2),
5 bg = gray(.97))
6 #-------------------------------- plot 1 -------------------------------#
7 with(C.isotope, plot(Decimal.date, D14C, xlab = "Date", ylab =
8 expression(paste(delta^14,"C (per mille)")),
9 type = "n"))

10

11 rect(par("usr")[1], par("usr")[3], par("usr")[2], par("usr")[4],
12 col = colors()[181])
13

14 with(C.isotope, points(Decimal.date, D14C, pch = 21, bg = "white"))
15

16 #-------------------------------- plot 2 -------------------------------#
17 with(C.isotope, plot(Decimal.date, CO2, xlab = "Date", ylab =
18 expression(paste(CO[2]," (ppm)")),
19 type = "n"))
20

21 rect(par("usr")[1], par("usr")[3], par("usr")[2], par("usr")[4],
22 col = colors()[363])
23

24 with(C.isotope, points(Decimal.date, CO2, type = "l"))
25

26 #-------------------------------- plot 3 -------------------------------#
27 with(C.isotope, plot(CO2, D14C, xlab = expression(paste(CO[2], " (ppm)")),
28 ylab = expression(paste(delta^14,"C (per mille)")),
29 type = "n"))
30

31 rect(par("usr")[1], par("usr")[3], par("usr")[2], par("usr")[4],
32 col = colors()[580])
33



6.13. MULTIPLE PLOTS 169

34 with(C.isotope, points(CO2, D14C, pch = 21, bg = "yellow"))
35

36 #-------------------------------- plot 4 -------------------------------#
37 plot(1:10, 1:10, xlab = "", ylab = "", xaxt = "n", yaxt = "n",
38 type = "n")
39

40 rect(par("usr")[1], par("usr")[3], par("usr")[2], par("usr")[4],
41 col = "white")
42 text(5.5, 5.5, expression(paste(over(
43 sum(paste("(",italic(x[i] - bar(x)),")"^2),
44 italic(i)==1, italic(n)),(italic(n) - 1))," = 78.4")),
45 cex = 1.5)
46 axis(side = 1, at = c(2, 4, 6, 8), labels = c("a", "b", "c", "d"))
47 mtext(side = 1,
48 expression(paste("Variance of ", CO[2], " concentration")),
49 line = 3)
50 par(op)



170 CHAPTER 6. BASE GRAPHICS

1995 2000 2005

40
60

80
10

0
12

0
14

0

Date

δ14
C

 (
pe

r 
m

ill
e)

1995 2000 2005

35
0

36
0

37
0

38
0

Date

C
O

2 
(p

pm
)

350 360 370 380

40
60

80
10

0
12

0
14

0

CO2 (ppm)

δ14
C

 (
pe

r 
m

ill
e)

∑
i=1

n
(xi − x)2

(n − 1)  = 78.4

a b c d

Variance of CO2 concentration

Figure 6.25: Figure resulting from summative example code.

�



6.14. HISTOGRAMS 171

6.14 Histograms

Histograms are vital for considering the distributional characteristics of quantitative data.

They consist of rectangles whose height is proportional or equivalent to the frequency of

particular numeric intervals (bins) describing that variable.

Example 6.8.

The brycesite dataset from package labdsv consists of environmental variables recorded at,

or calculated for, each of 160 plots in Bryce Canyon National Park in Southern Utah.

library(labdsv)
data(brycesite)

The histogram in Fig 6.26 shows the distribution of the aspect (in degrees) of sites in the

dataset.

with(brycesite, hist(asp, xlab = "Aspect (Degrees)", main = ""))

Aspect (Degrees)

F
re

qu
en

cy

0 100 200 300 400

0
5

10
15

20
25

Figure 6.26: Histogram of raw aspect measures from the brycesite dataset.

The distribution appears remarkably uniform.

Consideration of raw aspect values in analyses is problematic because the measurements are

circular. As a result the values 1 and 360 are numerically 359 units apart, although they in fact

only differ by one degree. One solution is to use the transformation [1 − cos(aspecto − 45)]/2.



172 CHAPTER 6. BASE GRAPHICS

This index will have highest values on southwest slopes (at 225 degrees), and lowest values on

northeast facing slopes (at 45 degrees). This acknowledges the fact that highest temperatures

in the Northern Hemisphere occur on Southwest facing slopes because they receive ambient

warming during the morning, coupled with late afternoon direct radiation. We have:

asp.val <- (1 - cos(((brycesite$asp - 45) * pi)/180))/2

Fig 6.27 shows the distribution of the transformed aspects which now appears bimodal.

hist(asp.val, xlab = "Aspect idex", main = "")

Aspect idex

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

Figure 6.27: Histogram of transformed aspect measures from the brycesite dataset.

�

6.15 Controlling Graphical Features using Vectors

It is often useful to add information to graphical elements using a variable.

Example 6.9.

The brycesite contains information on incident radiation received by sites, measured in

Langleys. A Langley (Ly) is a measure of energy per unit area, per unit time. To be precise,

one Ly = 1 calorie m−2 min−1. In SI units 1Ly = 41840.00 J m−2. Fig 6.28 is a scatterplot of

Langleys as a function of aspect index values. In addition five topographic positions from



6.15. CONTROLLING GRAPHICAL FEATURES USING VECTORS 173

brycesite$pos are distinguished using both point color and shape. For clarity I also create

a legend. Note that ridge top sites have mostly northeastern aspect, and hence have lower

radiation inputs.

1 with(brycesite, plot(asp.val, annrad, xlab = "Aspect value",
2 ylab = "Annual radiation (Langleys)",
3 col = as.numeric(pos), pch = as.numeric(pos)))
4

5 legend("bottomright", legend = levels(brycesite$pos), pch = 1:5, col = 1:5)

0.0 0.2 0.4 0.6 0.8 1.0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

Aspect value

A
nn

ua
l r

ad
ia

tio
n 

(L
an

gl
ey

s)

bottom
low_slope
mid_slope
ridge
up_slope

Figure 6.28: Scatterplot of aspect index value versus annual radiation with topographic posi-

tions indicated from the brycesite dataset.

Note that to assign colors and plotting characters appropriately, I coerce the categorical to-

pographic position vector, brycesite$pos, to be numeric with as.numeric() (Line 3). The
result is:

as.numeric(brycesite$pos)



174 CHAPTER 6. BASE GRAPHICS

[1] 4 3 3 4 5 3 3 5 3 3 2 2 3 4 3 3 3 1 2 2 2 5 4 4 3 5 4 3 5 3 5 3 2 5 5
[36] 4 1 1 2 4 4 3 3 3 3 4 3 5 3 3 3 2 5 3 5 3 3 5 5 4 3 3 5 2 3 3 5 2 2 5
[71] 2 2 3 3 3 2 2 3 3 2 4 3 4 2 5 3 3 2 2 3 5 5 3 5 5 3 3 3 3 5 5 3 3 3 3
[106] 5 1 2 4 1 2 1 2 3 5 1 5 3 3 3 3 1 3 2 2 5 2 1 2 2 1 2 1 1 1 1 1 1 2 1
[141] 1 4 5 5 5 4 5 2 2 4 1 5 5 5 3 2 2 1 5 4

Ones correspond to the first alphanumeric level in pos, bottom, whereas fives correspond to

the last alphanumeric level, up_slope. The color and symbols assignments are made within

the plot on Line three. Base graphics legends can be created using the function legend()
(Line 5). The first argument(s) will be a specific x, y position in the plot for the legend, or

one of: "bottomright", "bottom", "bottomleft", "left", "topleft", "top", "topright",
"right", or "center". The legend argument names the categories to be depicted. The

function levels() used in the legend argument lists the categories in a vector of class factor,

alphanumerically.

�

6.16 Secondary Axes

For many graphical summaries it may be necessary to add additional axes. For base graphics

thiswill involve laying one plot on top of another, by specifying par(new = TRUE), and defining
axes = FALSE, and depending on whether we want extra vertical or horizontal axes, xlab =
FALSE or ylab = FALSE, and ylab = "" or xlab = "" in the arguments of the second plot.

Example 6.10.

In this example I make a scatterplot that considers both brycesite annual radiation and

annual growing season radiation as a function of aspect value (Fig 6.29).

1 op <- par(mar = c(5,4.5,1,4.5), cex = 1.2)
2 with(brycesite, plot(asp.val, annrad, xlab = "Aspect value",
3 ylab = "Annual radiation (Langleys)"))
4 par(new = TRUE)
5 with(brycesite, plot(asp.val, grorad, pch = 19, axes = FALSE, xlab = "",
6 ylab = ""))
7 axis(4)
8 mtext(side = 4,"Growing season radiation (Langleys)", line = 3, cex = 1.2)
9 legend("bottomright", pch=c(1, 19), legend = c("Annual radiation",

10 "Growing season radiation"))
11 par(op)



6.17. BARPLOTS 175

0.0 0.2 0.4 0.6 0.8 1.0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

Aspect value

A
nn

ua
l r

ad
ia

tio
n 

(L
an

gl
ey

s)

13
5

14
0

14
5

15
0

15
5

16
0

16
5

17
0

G
ro

w
in

g 
se

as
on

 r
ad

ia
tio

n 
(L

an
gl

ey
s)

Annual radiation
Growing season radiation

Figure 6.29: Scatterplot of annual radiation and growing season radiation as function of the

aspect value index for the brycesite dataset.

Note the extra roomgiven to the right handmargin (Line 1) to contain a labeling for a secondary

vertical axis. The code par(new = TRUE) (Line 4) tells R not to clean the graphical device

before drawing a new plot. The code axis(4) (Line 7) creates labeling for the right hand axis.

The argument axes = FALSE in the second plot, suppresses default plot plotting of axis units

on the left and bottom axes.

�

6.17 Barplots

Barplots are frequently used to compare single number summaries (e.g., sum, median, mean,

etc.) of categorical levels.



176 CHAPTER 6. BASE GRAPHICS

Example 6.11.

Of great concern to both citizens and scientists are rising global levels of atmospheric green-

house gasses. Atmospheric CO2 concentrations have increased more than 40% since the

start of the industrial revolution while the more potent greenhouse gasses CH4 and NO2 have

increased approximately 150% and 23%, respectively (Brinkmann, 2009). We will take a

detailed look at recent global patterns of CO2 emissions and human population numbers in this

example, while creating different sorts of barplots, and applying some of the data management

techniques introduced in Chapter 4. Tidyverse data management approaches will be used

for creating ggplot2 graphics in Chapter 4. We will use the world.emissions dataframe from

asbio as our data source.

1 library(asbio)
2 data(world.emissions)
3

4 nred <- world.emissions[world.emissions$continent != "Redundant",]
5 co2 <- with(nred, tapply(co2, country, function(x){mean(x, na.rm = T)}))
6 n <- with(nred, tapply(co2, country, function(x){length(x)}))
7

8 co2n <- data.frame(cbind(co2, n))
9 co2n.sub <- co2n[which(row.names(co2) %in% c("Canada", "China", "Finland",

10 "Japan", "Kenya", "United States")),]
11

12 labels <- paste(rownames(co2n.sub), " (", co2n.sub$n, ")", sep = "")

In the code above, CO2 annual means and sample sizes for each country are computed on Lines

4-5. A subset dataset of six countries is created on Lines 7-8. Country names for this subset

and the number of years of data collection are combined in an object called labels on Line 10.

Here is the barplot code.

1 cols <- c("#5D3003","#347C62","#A79DBE","#DFCCC2","#994E58", "#F1F1F1")
2 barplot(co2n.sub$co2, las = 2, ylab = "", yaxt = "n", names = labels,
3 log = "y", col = cols)
4 axis(2)
5 mtext(side = 2,
6 expression(paste(CO[2], " Emissions (metric tons x ", 10^6, ")")),
7 line = 2.5)

The color palette on Line 1 in the code abovewas generated using colorspace::hclwizard().
Note that rotated x-axis labels (las = 2) and log-scale y-axis are are specified on the call to

barplot() onLines 2-3. A customized y-axis is constructed on Lines 4-7. This is done largely to

force the axis tick labels to be have a default vertical format. They would be vertical otherwise

because of the use of las = 2 in barplot(). Figure 6.30 shows the shows the final result.



6.17. BARPLOTS 177

C
an

ad
a 

(2
35

)

C
hi

na
 (

11
9)

F
in

la
nd

 (
16

0)

Ja
pa

n 
(1

52
)

K
en

ya
 (

70
)

U
ni

te
d 

S
ta

te
s 

(2
20

)

10
20

50
20

0
50

0

C
O

2 
E

m
is

si
on

s 
(m

et
ric

 to
ns

 x
 1

06 )

Figure 6.30: Barplot of mean annual CO2 emmission levels for six countries. Number of years

used in computing means indicated in parentheses.

To depict trends since the year 2000, we can use a stacked barplot (Fig 6.31), or a side by side

barplot (Fig 6.32) by applying barplot() to a matrix with columns representing categories.

In the code below we subset the data by country (Lines 1-4) and year (Line 6), and create

a dataframe containing CO2 and country data (line 8), which is converted to a wide format

matrix using unstack() (Line 9).

1 csub <- world.emissions[
2 which(world.emissions$country %in%
3 c("Canada", "China", "Finland",
4 "Japan", "Kenya", "United States")),]
5

6 ysub <- csub[which(csub$year >= 2000),]
7



178 CHAPTER 6. BASE GRAPHICS

8 dat <- data.frame(co2 = ysub$co2, country = ysub$country)
9 dat1 <- as.matrix(unstack(dat))

In the code below, hexadecimal colors generated by colorspace::hclwizard() are brought
in (Line 1) and modified, i.e., unlisted, coerced to be a character vector and reversed (Line 2),

preceding creation of the barplot (Lines 4-8).

1 cols <- read.table("colormap_hex.txt") # file from hclwizard()
2 cols <- rev(as.character(unlist(cols)))
3

4 barplot(dat1, log = "y", col = cols, yaxt = "n", las = 2, names = labels)
5 axis(2)
6 mtext(side = 2,
7 expression(paste(CO[2], " Emissions (metric tons x ", 10^6, ")")),
8 line = 2.5, cex = 1.2)

C
an

ad
a

C
hi

na

F
in

la
nd

Ja
pa

n

K
en

ya

U
ni

te
d 

S
ta

te
s

1e
+

01
1e

+
02

1e
+

03
1e

+
04

1e
+

05

C
O

2 
E

m
is

si
on

s 
(m

et
ric

 to
ns

 x
 1

06 )

Figure 6.31: Stacked barplot of mean annual CO2 emmission levels for six countries from

2000-2019.



6.17. BARPLOTS 179

Side by side barplots are generated by specifying beside = TRUE in barplot() (Line 2 in

code below).

1 barplot(dat1, log = "y", beside = TRUE, col = cols, yaxt = "n", las = 2)
2

3 axis(2)
4 mtext(side = 2,
5 expression(paste(CO[2], " Emissions (metric tons x ", 10^6, ")")),
6 line = 2.5, cex = 1.2)

C
an

ad
a

C
hi

na

F
in

la
nd

Ja
pa

n

K
en

ya

U
ni

te
d 

S
ta

te
s

10
50

50
0

50
00

C
O

2 
E

m
is

si
on

s 
(m

et
ric

 to
ns

 x
 1

06 )

Figure 6.32: Side by side barplot of mean annual CO2 emmission levels for six countries from

2000-2019.

�



180 CHAPTER 6. BASE GRAPHICS

6.18 Boxplots

Boxplots or box and whisker plots and their variants are an excellent way to quickly summarize

and compare the distributions of levels in a categorical variable with respect to a quantitative

variable. The function boxplot() does this by graphically providing a five number summary

for factor levels (Fig 6.33). Specifically, the upper and lower hinges of boxes from boxplot show

the 1st and 3rd quartiles (thus the box contains the central 50% of the data). The black stripe

in the middle of each box shows the median. The whiskers extend to the most extreme data

point which is no more than coef times the length of the box away from a hinge, where coef
is defined in the arguments for boxplot() (by default coef = 1.5). Circle symbols outside

of whiskers can be considered outliers (cf., Tukey et al., 1977).

Figure 6.33: A summary of boxplot characteristics.

Example 6.12.

Here we reconsider the world.emissions data using boxplots. Recall our approach from the

previous exercise:

1 csub <- world.emissions[
2 which(world.emissions$country %in% c("Canada", "China", "Finland",
3 "Japan", "Kenya", "United States")),]
4 ysub <- csub[which(csub$year >= 2000),]
5

6 dat <- data.frame(co2 = ysub$co2, country = ysub$country)



6.18. BOXPLOTS 181

We can use plot(q ~ c) (Fig 6.2) or boxplot(q ~ c) to make boxplots, where q is a vector
of quantitative data and c is a corresponding vector of categorical data.

1 cols1 <- rev(c("#5D3003","#347C62","#A79DBE",
2 "#DFCCC2","#994E58", "#F1F1F1"))
3 with(dat,
4 boxplot(co2 ~ country, col = cols1, las = 2, xlab = "",
5 ylab =
6 expression(
7 paste(CO[2], " Emissions (metric tons x ", 10^6, ")"))))

C
an

ad
a

C
hi

na

F
in

la
nd

Ja
pa

n

K
en

ya

U
ni

te
d 

S
ta

te
s

0

2000

4000

6000

8000

10000

C
O

2 
E

m
is

si
on

s 
(m

et
ric

 to
ns

 x
 1

06 )

Figure 6.34: Boxplots of annual CO2 emmission levels for six countries from 2000-2019.

�



182 CHAPTER 6. BASE GRAPHICS

6.18.1 Violin Plots

Another graphical tool for comparing probability distributions is a violin plot. It contains

contains similar components to a boxplots, including designation of boxes and whiskers, along

with a rotated kernel density plot on each side. Thus, it allows additional consideration of the

skew, kurtosis and potential multimodality of distributions. The function vioplot from the

package vioplot allows base graphics generation of violin plots.

Example 6.13.

As an example we will compare violin plots based on random sampling of a bimodal, uniform

and normal distribution (see ?vioplot). Note the kernel density generator fits a oblique

sphere, although the uniform PDF is a rectangle (Fig 6.35).

1 library(vioplot)
2

3 mu <- 2
4 sig <- 0.6
5 bimodal <- c(rnorm(1000,-mu, sig), rnorm(1000, mu, sig))
6 uniform <- runif(2000, -4, 4)
7 normal <- rnorm(2000, 0, 3)
8 vioplot(bimodal, uniform, normal, col = cols1[1:3],
9 names = "Bimodal", "Uniform", "Normal")

−
5

0
5

10

Bimodal Uniform Normal

Figure 6.35: Violin plots based on random sampling from a bimodal, uniform, and normal

distribution.



6.19. INTERVAL PLOTS 183

�

6.19 Interval Plots

Interval plots display location measures (e.g. means, medians, etc.), typically as bars, along

with error bars representing measures of data dispersion (e.g., standard errors, standard

deviations, confidence intervals, interquartile ranges, etc.). Thus, barplots and boxplots can be

considered special types of interval plots.

Example 6.14.

As an example, we will create an interval plot by hand using a classic dataset from R.A.

Fisher that records the yield of different varieties of potatoes. The data are in the dataframe

asbio::potato. Here are the means and the standard errors of the mean.

data(potato)
means <- with(potato, tapply(Yield, Variety, mean))
head(means)

Ajax Arran comrade British queen Duke of York Epicure
3.3400 2.2622 3.1367 1.7778 2.1600

Great Scot
3.4033

ses <- with(potato,
tapply(Yield, Variety, function(x){sd(x)/sqrt(length(x))}))

head(ses)

Ajax Arran comrade British queen Duke of York Epicure
0.305941 0.070902 0.181184 0.148313 0.146771

Great Scot
0.140929

We will plot the means using a barplot and save the horizontal locations of bars as a object

bloc.

bloc <- barplot(means, las = 2, ylab = "Yield (lbs per plant)", col = cols)

Wewill then overlay error bars using the function segments() or arrows().

segments(x0 = bloc, y0 = means - ses, y1 = means + ses, x1 = bloc)

The result is shown in Fig 6.36.



184 CHAPTER 6. BASE GRAPHICS

A
ja

x

A
rr

an
 c

om
ra

de

B
rit

is
h 

qu
ee

n

D
uk

e 
of

 Y
or

k

E
pi

cu
re

G
re

at
 S

co
t

Ir
on

 d
uk

e

K
 o

f K

K
er

rs
 p

in
k

N
ith

sd
al

e

T
in

w
al

d 
pe

rf
ec

tio
n

U
p−

to
−

da
te

Y
ie

ld
 (

lb
s 

pe
r 

pl
an

t)

0

1

2

3

4

Figure 6.36: Interval plot of the Fisher potato dataset. Bar heights are means, error bars

represent ̄𝑥 ± �̂��̄�.

�

The function asbio::bplot allows straightforward creation of interval plots from specified

explanatory and response variables. A large number of location and dispersion measures can

be specified in the function arguments. To recreate Fig 6.36 one could simply type:

with(potato, bplot(y = Yield, x = Variety, bar.col = cols, border = cols))

6.19.1 Pairwise Comparisons

An important component of many biological analyses are multiple pairwise comparisons of

means (or other location measures). These tests will often require control of Family-Wise

type I Error Rate (FWER), that is, the probability of incorrectly rejecting at least one true null

hypothesis in a family of related tests. The most powerful method for controlling FWER in



6.19. INTERVAL PLOTS 185

a post hoc family of pairwise tests, following an omnibus ANalysis Of VAriance (ANOVA), is

Tukey’s honest significant difference (see Aho (2014)).

Example 6.15.

Zelazo et al. (1972) performed a series of experiments to determine whether certain exercises

could allow infants to learn to walk at a younger age. The experimental treatments were:

Active Exercise (AE), Passive Exercise (PE), Test-Only (TO), and Control (C). The data are in

the dataframe asbio::baby.walk. For more information type ?baby.walk.

Rejection of the omnibus ANOVA null hypothesis of no mean treatment differences, allowed

pairwise comparison of treatment means using Tukey’s procedure. We will use the function

asbio::pairw.anova() to run this analysis.

data(baby.walk)
tukey <- with(baby.walk, pairw.anova(y = date, x = treatment))
tukey

95% Tukey-Kramer confidence intervals

Diff Lower Upper Decision Adj. p-value
muAE-muC -2.225 -4.35648 -0.09352 Reject H0 0.038997
muAE-muPE -0.525 -2.65648 1.60648 FTR H0 0.897224
muC-muPE 1.7 -0.52625 3.92625 FTR H0 0.172932
muAE-muTO -1.58333 -3.61562 0.44895 FTR H0 0.160457
muC-muTO 0.64167 -1.48981 2.77314 FTR H0 0.829542
muPE-muTO -1.05833 -3.18981 1.07314 FTR H0 0.513366

Interval plots can be used to summarize these comparisons. The plotmethod for objects of

class pairw calls bplot() for this purpose. In particular, we have:

plot(tukey, ylab = "Months until walking", cex.lett = 1.2)

Bars are means. Errors are SEs.

The population means of factor levels with the same letter are not
significantly different at alpha = 0.05 using the Tukey HSD method.



186 CHAPTER 6. BASE GRAPHICS

AE C PE TO

M
on

th
s 

un
til

 w
al

ki
ng

0
2

4
6

8
10

12

a b ab ab

Figure 6.37: An interval plot summarizing the results of pairwise comparisons for the

baby.walk example.

As stated in the plot.pairw() function output (Fig 6.37), letters above bars summarize the

result of pairwise comparisons. In particular, factor levels means with the same letter are not

significantly different using the conventional FWER 𝛼 = 0.05.

�

Wewill look at more sophisticated graphical methods for pairwise comparisons in Ch 7.

6.20 matplot()

The function matplot() allows one to plot the columns of one matrix against the columns

of another. There is no clear ggplot2 alternative to matplot() because tidyverse functions
require data to be a long table format, whereas matplot() works best with data in a wide

table format.

Example 6.16.

Todemonstratematplot()wewill use thedat1dataset, used to create Fig 6.31, which contains
annual CO2 levels from 2000-2019 for six countries.



6.20. MATPLOT() 187

1 par(mar = c(3,4.5,5,2), cex = 1.1)
2 matplot(x = 2000:2019, y = dat1, col = cols1, type = "l", lwd = 1.5,
3 log = "y",
4 ylab = expression(
5 paste(CO[2], " Emissions (metric tons x ", 10^6, ")")))
6

7 legend(x = 2001, y = 80000, xpd = TRUE,
8 lty = 1:5, ncol = 2, lwd = 1.5, bty = "n",
9 col = cols, legend =

10 c("Canada", "China", "Finland",
11 "Japan", "Kenya", "United States"))

In the code above, note that I allocate additional room in the top of the graph for a legend (Line

1). Note that the response variable is a matrix of CO2 values whose columns delimit countries

(Line 2). The xpd argument in legend() allows plotting to be clipped to the device region

which will generally exceed the plot region (Line 6). The result is shown in Fig 6.38.



188 CHAPTER 6. BASE GRAPHICS

2000 2005 2010 2015

5
10

50
50

0
50

00

2000:2019

C
O

2 
E

m
is

si
on

s 
(m

et
ric

 to
ns

 x
 1

06 )

Canada
China
Finland

Japan
Kenya
United States

Figure 6.38: A matrix line plot.

�

6.21 Interactivity

As noted earlier, R graphics are generally non-interactive. Some graphical interactivity is

allowed via the function locator(), which returns graphical coordinates where a mouse click

occurred in plot, and identify(), which can be used to add labels and symbols to mouse click

locations. For instance, try:

dev.new(RStudioGD = FALSE) # If one is using RStudio
plot(1:10)
identify(1:10, labels = 1:10)

For Windows, X Window, and Cairo graphics devices, more sophisticated methods exist for



6.22. THREE DIMENSIONAL GRAPHICS 189

interactivity. In these settings, the function setGraphicsEventHandlers() can be used to

call functions when events such as mouse clicks or keystrokes occur. For instance, open an

appropriate graphics device and try:

example("getGraphicsEvent")

Still other interactive options are possible using animations and hand rotatable graphics. These

approaches, which are often transferable to Markdown HTMLs, are considered briefly in the

next two sections of this chapter. Animations using the package ggplot2 are considered in Ch

7. GUI driven graphics interactivity is also possible, and is described in Ch 11.

6.22 Three Dimensional Graphics

It is often necessary to consider more than two variables in biological graphics. This can

be done in a number of different ways, including the use of additional axes (e.g., Fig 6.29)

(including 3Dplots), additional colors, multiple line or symbol types (Fig 6.28), or evenmultiple

symbol sizes.

Example 6.17.

To consider three dimensional plotting we will use two datasets from the package vegan

which describe taiga/tundra ecosystems at particular Scandinavian sites. Vegetation data are

contained in the dataset varespecwhile soil chemistry data for the same sites are contained

in the dataset varechem.

library(vegan)
data(varespec)
data(varechem)

In Fig 6.39 we examine the distribution of the heath plant Vaccinium vitis-idaea (a common

species in boreal forest understories) with respect to both pH and soil percent nitrogen. This

is done by making symbol sizes change with the abundance of V. vitis-idaea.

with(varechem, plot(N, pH, xlab = "% soil N", pch = 16,
cex = varespec$Vaccviti/100 * 15))



190 CHAPTER 6. BASE GRAPHICS

15 20 25 30

2.
8

3.
0

3.
2

3.
4

3.
6

% soil N

pH

Figure 6.39: Cover of Vaccinium vitis-idaea with respect to pH and % soil nitrogen. Larger

symbols indicate higher percent plant cover.

Vaccinium vitis-idaea appears to prefer intermediate to low levels of soil N, and acidic soils.

The somewhat negative association between soil N and pH is probably due to soil leaching,

because H+ (and Al3+) cations are more strongly adsorbed by soil colloids than bases in poorly

drained soils.

A 3D plot of the same associations can be created using the scatterplot3d() function from

the package scatterplot3d .

1 library(scatterplot3d)
2 Fig <- function(angle = 55){
3 s3d <- scatterplot3d(cbind(varechem$N, varechem$pH, varespec$Vaccviti),
4 type = "h", highlight.3d = TRUE, angle = angle, scale = .7, pch = 16,
5 xlab = "N", ylab = "pH", zlab =
6 expression(paste(italic(Vaccinium), " ", italic(vitis-idaea),
7 " % cover")))
8

9 lm1 <-lm(varespec$Vaccviti ~ varechem$N + varechem$pH)



6.22. THREE DIMENSIONAL GRAPHICS 191

10 s3d$plane3d(lm1)
11 }
12 Fig()

In the code above, I define the figure to be a function (named Fig) to allow the angle of rotation

in the 3D scatterplot to be easily changed using the angle argument in Fig (Line 2). Functions
will be addressed in detail in Ch 8. By stipulating highlight.3d = TRUE (Line 4), objects that
are closer to the viewer with respect to the x plane are given warmer colors. A regression

“plane” is also overlaid on the graph (Lines 9-10). The fitted plane is produced from a multiple

regression model created by the function lm().

The result is shown in Fig 6.40.

10 15 20 25 30 35

 0
 5

10
15

20
25

2.6
2.8

3.0
3.2

3.4
3.6

N

pH

V
a

c
c

in
iu

m
 v

it
is

−
id

a
e

a
 %

 c
ov

er

Figure 6.40: Cover of Vaccinium vitis-idaeawith respect to pH and % soil nitrogen, depicted in

a 3D scatterplot.

�



192 CHAPTER 6. BASE GRAPHICS

6.23 Animation

Animations can be created in R to illustrate a wide range of processes (Xie, 2013; Xie et al.,

2018b). Functions with animation are generally based on loops (Section 8.4) with some

method of slowing the loop; usually the function Sys.sleep().

Example 6.18.

Here we add animation to the 3D scatterplot shown in Fig 6.40. This will be facilitated by the

fact that the plot is a function with an argument whose alteration results in modification of the

graph.

1 fig.rot <- function(){
2 lapply(seq(1, 360), function(i){
3 Fig(i)
4 Sys.sleep(.1)
5 })
6 }
7

8 fig.rot()
9 # save frames into one GIF:

10 library(animation)
11 saveGIF(fig.rot(), interval = 1, movie.name = "vaccinium.gif")

Recall that lapply() returns a list of the same length as its first argument X, whose elements

result from applying a function, given in the second argument, to corresponding elements of X.
In the code above, an argument-less function is created containing a loop run by lapply()
(Lines 2 - 5). As the loop index i changes from i = 1 to i = 360 (Line 2) this changes the
angle argument in the function fig(), used in creating Fig 6.40. At the end of each step in the

loop, the system is paused for a tenth of second (Line 4) with the function Sys.sleep() to
allow each “frame” of the animation to be viewed separately. In the (optional) last two lines of

code, the R package animation is loaded, and the function animation::saveGIF() is used to

save the animation in a GIF file format7.

The animation result is shown in 6.41.

7Use of saveGIF requires installation of open source software ImageMagick or GraphicsMagick (see

?saveGIF).

http://www.imagemagick.org/script/convert.php
http://www.graphicsmagick.org


6.23. ANIMATION 193

Figure 6.41: Animated version of the 3D scatterplot from Fig 6.40. Animation controls are

provided by the LaTeX package animation.

�

Working animations generated in R can be placed into HTML documents created under R

Markdown, or PDF documents created using Sweave-alike approaches (Section 2.9.2). The

former approach currently requires installation of the gifski R package and the specification:

animation.hook = "gifski" among the chunk options for the animation. The latter ap-

proach requires loading of the animate LaTeX package and using the chunk option fig.show
= "animate". PDF animations can viewed using a number of PDF viewers including the Foxitr

and Adober Acrobat Readers.

Example 6.19.

We can also create hand-rotatable 3D figures under the rgl real-time rendering system.

1 expg <- expand.grid(varechem$pH, varechem$N)
2 subs <- cbind(varechem$pH, varechem$N)
3 tf <- (expg[,1] == subs[,1]) & (expg[,2] == subs[,2])
4 y <- ifelse(tf == TRUE, varespec$Vaccviti, NA)



194 CHAPTER 6. BASE GRAPHICS

5 surface <- data.frame(N = expg[,1], pH = expg[,2], vac.vit = y)
6

7 library(car)
8 scatter3d(vac.vit ~ N + pH, data = surface, surface = TRUE, fit = "linear",
9 zlab = "N", xlab = "pH", ylab = "Vaccinium vitilus (% cover)")

In the code above, a initial surface is created that considers all possible combinations of pH and

N outcomes (Line 1) and actual occurrences of varespec$Vaccviti at observed combinations

(Lines 3 and 4). The function scatter3d() in the package car uses tools from the rgl package

to render a three dimensional scatterplot. The scatterplot will be rotatable within anR session,

and can be rendered as a rotatable graphic in an RMarkdown HTML8. The form of the plot

is shown in Fig 6.42, although its rotatability will require an interactive R environment or a

ammenable HTML/PDF framework. Plots from rgl can also be rendered and manipulated in

Shiny apps (see Ch 11).

Figure 6.42: A hand rotatable graphics object (within an R interactive or suitable PDF/HTML

environment).

�

Exercises

1. Consider the variables: x <- c(1,2,2.5,3,4,3,5) andy <- c(6,4.3,3,3.1,2,1.7,1).
(a) Make a plot with x defining the x-axis and y on the y-axis.

8See rgl::playwidget() if you you are reading this document as a pdf.



6.23. ANIMATION 195

(b) Make every point in the scatterplot a different color.

(c) Make every point a different shape.

(d) Create a legend describing all the shape and color combinations of all points one

through seven (call them Point 1, Point 2, etc.).

(e) Convert from a point to an overplotted line and point plot.

(f) Change the label of the x-axis to “Abscissa axis” and the label of the y-axis to be

“Ordinate axis” using a plotmath approach. This will require use of the functions

expression(), paste() and italic().
(g) Place the text “y = -1.203x +6.539” at coordinatesx = 2, y = 2.5using the function

text(). Italicize as indicated.
(h) Place a line with a slope of -1.203 and an y-intercept of 6.539 on the plot using the

function abline().

2. The Indometh dataframe from the package datasets describes pharmacokinetics of the

drug indomethacin following intravenous injections for six human subjects.

(a) Create a histogram for the variable conc, which gives plasma concentrations of

indomethacin in (mcg/ml) in subjects over time. Use an appropriate x-axis label.

(b) Create a scatterplot of conc as a function of time (in hours). Create appropriate

axis labels.

(c) Change symbols and colors of points in (b) based on levels in Subject.
(d) Create a wide table format for Indometh using: wide <- unstack(Indometh,

conc ~ Subject) andnames(wide) <- paste("Subject", c(1,4,2,5,6,3)).
(e) Create a stackedbarplot anda sideby sidebarplot basedon: barplot(as.matrix(wide)).
(f) Use appropriate y-axis labels.

(g) Create a multiple line plot (with a line for each subject) using: time <- c(0.25,
0.50, 0.75, 1.00, 1.25, 2.00, 3.00, 4.00, 5.00, 6.00, 8.00) and

matplot(x = time, y = wide, type = "l")
(h) Generate appropriate axis labels for the plot.

(i) Create an appropriate legend for the plot created in (h). The colors and line types

used by matplot()will be 1:6. The order of subjects is 1, 4, 2, 5, 6, 3.

3. The dataframe life.exp from asbio compares life expectancy of field mice given five

different diets.

(a) Make and interpret a boxplot showing lifespan as a function of treatment.
(b) Make an interval plot by hand showing lifespan as a function of treatment using

means as measures of location, and standard deviations to generate error bars.

4. (Advanced) Conduct an ANOVA and a post hoc pairwise comparison of means with

Tukey’s HSD using: anova(lm(lifespan ~ treatment, data = life.exp)), tukey
<- with(life.exp, pairw.anova(lifespan, treatment)).
(a) Create an interval plot summarizing these results using: plot(tukey).
(b) Interpret (a).

5. Load the C.isotope dataframe from the package asbio. Using par(mfrow()), create a
graphical device holding three plots in a single row, i.e., the three plots will be side by

side.

(a) In the first plot, show 𝛿14C as a function of time (decimal.date) using a line plot.



196 CHAPTER 6. BASE GRAPHICS

Use appropriate axis labels.

(b) In the second plot, show CO2 concentration as a function of time in a scatterplot.

(c) In the third plot, showmeasurement precision (column four in the dataset) as a

function of 𝛿14C.

6. Load the goats dataframe from package asbio.

(a) Create a scatterplot of NO3 as a function of feces.
(b) Make a plot showing NO3 and organic.matter as a simultaneous function of feces

by adding a second y-axis.

(c) Change symbol sizes in (a) to reflect the values in organic.matter.

(d) Create a 3D scatterplot with scatterplot3d::scatterplot3d, depicting NO3 as a
function of organic.matter and feces.



Chapter 7

Grid Graphics, Including ggplot2

“If you think you can learn all of R, you are wrong. For the foreseeable future you

will not even be able to keep up with the new additions.”

- Patrick Burns, CambR User Group Meeting, Cambridge (May 2012)

7.1 Grid Graphics

There are a large number of auxiliary R packages specifically for graphics. Many of these

utilize or extend the base R graphics approaches described in Chapter 6. Several successful

newer packages, however, rely on the R grid graphics system (see Murrell (2019)), codified

in the package grid (R Core Team, 2023). The grid graphics system itself provides only

low-level facilities with no high-level functions to generate complete plots. Nonetheless,

several successful packages have built high-level functions on grid foundations including

lattice, gridGraphics –which converts plots drawn with the base R graphics, e.g., plot(), to
identical grid output– and the highly popular ggplot2 package. Functions from the latter

package are the major focus of this chapter.

7.2 lattice

Among other applications, the lattice package (Sarkar, 2008) contains functions for imple-

menting the trellis graphical system1, so-called because it often utilizes a rectangular array of

plots resembling a garden trellis (Ryan and Nudd, 1993). Trellis plots, generated from lattice,

are an important component of several widely-used R packages, including nlme, which allows

the generation of linear and nonlinear mixed effects models (see Aho (2014), Ch 10).

Example 7.1.

A simple example of a call to trellis plotting is shown in Fig 7.1. The datasets::Indometh

1The R trellis graphics system was originally developed for S and S-Plus at Bell Labs (see Becker et al. (1996)).

The lattice package can be considered a re-implementation of this original system.

197



198 CHAPTER 7. GRID GRAPHICS, INCLUDING GGPLOT2

dataframe, previously used in Examples in Ch 6, records pharmacokinetics of the drug in-

domethacin, following intravenous injections given to human subjects. The dataframe belongs

to several grouped object classes, defined in nlme, which have their own plotting methods (Ch

8), and are implemented through a generic call to plot(). We are, of course, more familiar

with the use of plot() in base R graphics approaches, implemented via the graphics package.

library(nlme)
plot(Indometh)

Time since drug administration (hr)

In
do

m
et

ha
ci

n 
co

nc
en

tr
at

io
n 

(m
cg

/m
l)

0.0

0.5

1.0

1.5

2.0

2.5

0 2 4 6 8

1

0 2 4 6 8

4

0 2 4 6 8

2

0 2 4 6 8

5

0 2 4 6 8

6

0 2 4 6 8

3

Figure 7.1: Example of a trellis plot. Indomethacin levels are tracked in six human subjects

over eight hours following intravenous injections.

�

The lattice package contains several high level plotting functions that can be considered

analogues of base R graphics functions. These include:

• lattice::xyplot(), which is similar to graphics::plot() in its default type = "p"
mode,

• lattice::histogram(), which is analogous to graphics::hist(),
• lattice::barchart(), which is similar to graphics::barplot(),
• lattice::levelplot(), which is analogous to graphics::image(), and
• lattice::wireframe(), which is similar to graphics::persp().

In general, trellis plots in lattice can be created using a conditional formula as the first argument

of its functions. This will have the form y ~ x|z, which signifies y is a function of x, given
levels in z.

Example 7.2.

Consider a summarization of the association of age and tobacco use (LOW and HIGH) and
esophageal cancer cases using the e.cancer dataset (Breslow and Day, 1980) from asbio (Fig

7.2).



7.2. LATTICE 199

1 data(e.cancer)
2

3 library(tidyverse)
4 means <- e.cancer |> # obtain means
5 group_by(age.grp, tobacco) |>
6 summarize(cases = mean(cases))
7

8 library(lattice)
9 barchart(cases ~ age.grp|tobacco, data = means, xlab = "Age",

10 ylab = "No. of cases")

Age

N
o.

 o
f c

as
es

0

1

2

3

4

5

6

25−3435−4445−5455−6465−74

HI

25−3435−4445−5455−6465−74

LOW

Figure 7.2: Use of lattice::barchart() to illustrate changes in esophogeal cancer cases

with subject tobacco use and age. Bar heights are means.

Note the use of pipes and tidyverse functions (Ch 5) to obtain mean numbers of cases
for combinations of levels in age.grp and tobacco (Lines 3-6). The formulacases ~
age.grp|tobacco (Line 8) indicates that the mean cases should considered as a function of

levels in age.grp, given levels in tobacco.

�

Approaches in lattice can be used in may non-trellis applications.

Example 7.3.

Figure 7.3 provides examples of three dimensional graphics generation using the lattice func-

tions levelplot(), contourplot(), and wireframe(). The functions are easiest to use when



200 CHAPTER 7. GRID GRAPHICS, INCLUDING GGPLOT2

data are in a spatial grid format with row and column numbers defining evenly spaced inter-

vals from some reference point, and cell responses themselves constitute “heights” for the

z (vertical) axis. The popular volcano dataset, used in the figure, describes the topography

of Maungawhau / Mount Eden, a scoria cone in the Mount Eden suburb of Auckland, New

Zealand. In this case, rows and columns represent 10m Cartesian intervals. The first row

contains elevations (in meters above sea level) for northernmost points, whereas the first

column contains elevations of westernmost points. The argument split in plot.trellis()
is used with both graphs in Fig 7.3 (Lines 5 and 7). It is a vector of 4 integers c(x, y, nx,
ny) that indicate where to position the current plot at the x, y position in a regular array of nx
by ny plots.

library(lattice)
plot(levelplot(volcano, col.regions = heat.colors, xlab = "x", ylab = "y"),

split = c(1, 1, 1, 2), more = TRUE,
panel.width = list(x = 5.4, units = "inches"))

plot(wireframe(volcano, panel.aspect = 0.7, zoom = 1, lwd = 0.01,
xlab = "x", ylab = "y", zlab = "z"),

split = c(1, 2, 1, 2), more = FALSE,
panel.width = list(x = 5.4, units = "inches"))



7.3. GGPLOT2 201

x

y

10

20

30

40

50

60

20 40 60 80

100

120

140

160

180

200

xy

z

Figure 7.3: Representations of Maungawhau (Mt Eden) using lattice functions.

�

While lattice can be used to generate nice graphs, many users have found its coding require-

ments to be burdensome and non-intuitive. This issue, coupled with the desirable characteris-

tics of the grid graphics system, prompted the development of the package ggplot2, one of the

tidyverse collection of packages (Ch 5).

7.3 ggplot2

The ggplot2 package (formerly ggplot) emulates the “grammar of graphics”, that underlies all

statistical graphics (Wilkinson, 2012). According to its developer, “ggplot2… tries to take the

good parts of base and lattice graphics and none of the bad.” The success of the ggplot2 package

is evident from its rich ecosystem of contributed extension packages. Detailed descriptions of

the ggplot2 package can be found in Wickham (2010), and Wickham (2016). Helpful 𝑔𝑔𝑝𝑙𝑜𝑡2
“cheatsheets” can be found here. Like most grid packages, ggplot2 does not play well with base

https://exts.ggplot2.tidyverse.org/gallery/
https://rstudio.github.io/cheatsheets/html/data-visualization.html


202 CHAPTER 7. GRID GRAPHICS, INCLUDING GGPLOT2

R graphics. In fact, ggplot2 is based on its own unique object oriented system, the ggproto

system 2.

7.3.1 ggplot()

The function ggplot() is used to initialize essentially all plotting procedures in ggplot2. There

are three common approaches:

1. ggplot(df, aes(x, y, other aesthetics))
• Here df is a tibble or dataframe. and aes() represents aesthetic mappings. This

approach is recommended if all layers use the same data and aesthetics.

2. ggplot(df)
• Here only the dataframe or tibble to be used is identified up-front. This approach

is useful if graphical layers use different 𝑥 and 𝑦 coordinates, drawn from the same

dataset, df.
3. ggplot()

• Here a ggplot skeleton is initialized that is fleshed out as layers are added. This

approach is recommended ifmore thanmore thanonedataset is used in the creation

of graphical layers.

One of these three approaches will be used as the first line of code when creating a ggplot2

graphic. Layers will then be added representing geoms, themes, and aesthetics (see Section

7.3.2 immediately below). To clarify coding steps, this is typically done by separating layers

into lines, connected with the continuation prompt +.

Example 7.4.

In the code below I have initiated a ggplot, under Approach 1 discussed above, using data

from a dataframe called df that contains variables named x and y, that will define the 𝑥 and 𝑦
coordinates for the plot. I have also added two geom layers and a theme, via the imaginary

functions geom1, geom2 and theme1.

ggplot(df, aes(x = x, y = y)) +
geom1() +
geom2() +
theme1()

�

7.3.2 Geoms, Aesthetics, and Themes

The ggplot2 package facilitates the generation of overlays with geoms, short for “geometric

objects”, aesthetics, and themes. A number of ggplot2 geom functions are shown in Table

7.1. Note that arguments in geom functions are fairly consistent. The argument mapping
refers to aesthetic mappings, often specified with the ggplot2 function aes(). A few aesthetic

2For more information type: ?ggplot2::ggproto.



7.3. GGPLOT2 203

mapping functions are shown in Table 7.2. An explicit definition for the stat argument is

required by several geoms, e.g., geom_col() and geom_bar(), and can take the form stat =
"identity", indicating that raw unsummarized data are to be plotted. The ggplot2 package

also allows specification of general graphical themes including user-defined themes, via the

function theme(). An exhaustive list of> 90 potential theme() arguments can be found by

typing ?theme. Pre-defined ggplot2 theme frameworks include theme_gray(), the signature
ggplot2 theme (with a grey background and white gridlines), theme_bw(), theme_classic(),
theme_dark(), theme_minimal(), and many others.

Table 7.1: A few geom alternatives.

Geom function Usage Impt. arguments

geom_abline() Add reference lines mapping
geom_hline() data
geom_vline() slope

intercept

geom_segment() Add lines and curves mapping
geom_curve() data

position

geom_area() Area and ribbon charts mapping
geom_ribbon() data

stat

geom_bar() Bar charts mapping
geom_col() data

stat

geom_bin2d() Heatmap of bin counts mapping
data
stat

geom_boxplot() Boxplots mapping
data
stat

geom_contour_filled() Generate 2D contours of 3D surface mapping
data
stat

geom_count() Count overlapping points mapping
geom_sum() data

stat

geom_crossbar() Add lines, crossbars, error bars mapping
geom_errorbar() data
geom_linerange() stat



204 CHAPTER 7. GRID GRAPHICS, INCLUDING GGPLOT2

geom_pointsrange()

geom_density() Smoothed densities mapping
data
stat

geom_density_2d() Contours of 2D densities mapping
geom_density_2d_filled() data

stat

geom_dotplot() Dot plots mapping
data
position

geom_errorbarh() Horizontal error bars mapping
data
stat

geom_freqpoly() Histograms mapping
geom_histogram() data

stat

geom_function() Draw curve from function mapping
data
stat

geom_hex() Hexagonal heat map mapping
data
stat

geom_jitter() Jittered points mapping
data
stat

geom_text() Add text mapping
data
stat

geom_point() Add points mapping
data
stat

7.3.3 Boxplots

Figure 7.4 shows a boxplot of R.A. Fisher’s classic potato dataset from the Rothamsted Ex-

perimental Station (Fisher and Mackenzie, 1923). There are three important coding features

that should be recognized in the chunk below. First, the plot was initialized using the first

approach described in the previous section: ggplot(df, aes(x, y, other aesthetics))



7.3. GGPLOT2 205

Table 7.2: A few example of ggplot2 aesthetic functions.

Function Usage Arguments

aes() Aesthetics of geoms x, y

colour() Color related aesthetics See ?aes_colour_fill_alpha
fill()
alpha()

linetype() Line type, size, shape See ?aes_linetype_size_shape
size()
shape()

group() Grouping See ?aes_group_order

(Line 2). Specifically, the dataframe to be used, potato, was identified, and the coordinates for

the plot were defined inside aes(). Second, plot modifications are added with the functions

theme() (which includes a call to the function element_text() to change the angle of text on
the x-axis), xlab(), and finally, geom_boxplot() (Lines 3-5). Third, the continuation prompt,

+, is placed at the end of lines of code to indicate that another graphical layer is being added to

the plot. In ggplot2, +, is somewhat analogous to the forward pipe operator, |>, used in the

tiddyverse (Ch 5). Specifically, it denotes the continuation of ggplot2 plotting commands for a

particular graphic. This continuation is broken with a line break (Line 6).

1 data(potato) # in asbio
2 ggplot(potato, aes(x = factor(Variety), y = Yield)) +
3 theme(axis.text.x = element_text(angle = 50, hjust = 1, vjust = 0.9)) +
4 xlab("Variety") +
5 geom_boxplot()



206 CHAPTER 7. GRID GRAPHICS, INCLUDING GGPLOT2

1

2

3

4
Aja

x
Arra

n 
co

m
ra

de
Brit

ish
 q

ue
en

Duk
e 

of
 Y

or
k

Epi
cu

re
G

re
at

 S
co

t
Iro

n 
du

ke

K o
f K

Ke
rrs

 p
in

k
Nith

sd
al

e
Ti

nw
al

d 
pe

rfe
ct

io
n

Up−
to

−d
at

e

Variety

Y
ie

ld

Figure 7.4: An example of a ggplot2 boxplot. This is the signature appearance of ggplot2

graphs: a grey background and white grid lines.

7.3.4 Saving Plots

Plots can be saved using the function ggsave() or with a graphical device function, e.g., pdf(),
png(), as described in Ch 6.

1 g <- ggplot(potato, aes(x = factor(Variety), y = Yield)) +
2 theme(axis.text.x = element_text(angle = 50, hjust = 1, vjust = 0.9)) +
3 xlab("Variety") +
4 geom_boxplot()
5

6 pdf("potato.pdf")
7 print(g)
8 dev.off()

Note that with the first line of code the ggplot is converted into an object called g. In Lines 5-7,

the graph is rendered, using print.ggplot(g) or plot.ggplot(g), and compiled.



7.3. GGPLOT2 207

7.3.5 Line Plots

Line plots are generally rendered using the function geom_line().

In Fig 7.5 we consider the Fisher’s potato data under a line plot approach. This presentation

allows us to consider both potato variety and fertilizer levels. Note that I distinguish categories

in the variable Fert using colour and lty arguments in aes() function calls (Line 1).

1 ggplot(potato, aes(x = Variety, y = Yield, colour = Fert)) +
2 geom_line(aes(group = Fert, lty = Fert),
3 alpha = .7, linewidth = 1.1) +
4 theme_classic() +
5 theme(axis.text.x = element_text(angle = 50, hjust = 1, vjust = 0.9))

1

2

3

4

Aja
x

Arra
n 

co
m

ra
de

Brit
ish

 q
ue

en
Duk

e 
of

 Y
or

k
Epi

cu
re

G
re

at
 S

co
t

Iro
n 

du
ke

K o
f K

Ke
rrs

 p
in

k
Nith

sd
al

e

Ti
nw

al
d 

pe
rfe

ct
io

n
Up−

to
−d

at
e

Variety

Y
ie

ld

Fert

B

Cl

S

Figure 7.5: Line plot representation of the potato dataset.

7.3.6 Scatterplots

Here we summarize the asbio::world.emissions CO2 and gross domestic product data,

using a tidyverse approach.



208 CHAPTER 7. GRID GRAPHICS, INCLUDING GGPLOT2

1 library(asbio)
2 data(world.emissions)
3 library(dplyr)
4 country.data <- world.emissions |>
5 filter(continent != "Redundant") |>
6 group_by(country) |>
7 summarize(co2 = mean(co2, na.rm = TRUE),
8 gdp = mean(gdp, na.rm = TRUE))

I don’t like the default ggplot2margins. Specifically, I feel that the axis label font size is too

small and placed too close to the axes. Thus, prior to making a scatterplot of these variables, I

make my own margin theme, as a function, that calls theme().

1 margin_theme <- function(){
2 theme(axis.title.x = element_text(vjust=-6, size = 12),
3 axis.title.y = element_text(vjust=6, size = 12),
4 axis.text = element_text(size = 10),
5 plot.margin = margin(t = 7.5, r = 7.5, b = 22, l = 22))
6 }

We can call this custom theme within ggplot code (Fig 7.6).

1 g <- ggplot(country.data, aes(x = gdp, y = co2)) +
2 ylab(expression
3 (paste(CO[2], " Emissions (metric tons x ", 10^6, ")"))) +
4 xlab("GDP (international dollars)") +
5 geom_point(size = 2) +
6 scale_y_continuous(trans= "log10") +
7 scale_x_continuous(trans= "log10") +
8 theme_classic() +
9 margin_theme()

10 g



7.3. GGPLOT2 209

1e−01

1e+01

1e+03

1e+09 1e+10 1e+11 1e+12

GDP (international dollars)

C
O

2 
E

m
is

si
on

s 
(m

et
ric

 to
ns

 x
 1

06 )

Figure 7.6: An example of a ggplot2 scatterplot using the world.emissions dataset.

I also called the complete ggplot2 theme theme_classic() to generate an uncluttered graph

with no grid lines.

Several other code steps are worth mentioning in Fig 7.6. First, note the use of plotmath

code using calls to expression() in xlab() and ylab(). As an alternative, I could have

used labs(x,y) where the arguments x and y would contain code for xlab() and ylab().
Second, log10 transformations were applied to both axes using the ggplot2 functions

scale_x_continuous() and scale_y_continuous(). As an alternative, I could have used

the functions scale_x_log10() and scale_y_log10().

We can also require specific tick locations using scale_y_continuous (Fig 7.7).

g + scale_y_continuous(breaks = c(1, 50, 150, 500, 750, 1600),
trans= "log10")



210 CHAPTER 7. GRID GRAPHICS, INCLUDING GGPLOT2

1

50

150

500
750

1600

1e+09 1e+10 1e+11 1e+12

GDP (international dollars)

C
O

2 
E

m
is

si
on

s 
(m

et
ric

 to
ns

 x
 1

06 )

Figure 7.7: Custom tick mark locations overlaid on he 𝑦-axis of Fig 7.6.

7.3.7 Transformations

Other than log10 transformations (Fig 7.6, several other graphical transformation can be readily

applied in the transform function of scale_x_continuous() and scale_y_continuous()
including "asn" (arcsine), "atanh" (the inverse hyperbolic tangent), "boxcox", i.e., the opti-
mal power transform for the response variable in a linear model (see Aho (2014)), "date",
"exp", "hms", "log" (log𝑒 transform), "log1p" (log𝑒 transform, following the addition of 1 to

prevent undefined logarithms of zeroes), "log2", "logit" (i.e., the log odds for a probability),
"modulus", "probit", "pseudo_log" (log𝑒 transform, NAs resulting from undefined loga-

rithms of zeroes, are given the value zero), "reciprocal", "reverse", "sqrt" and "time".

7.3.8 Adding Model Fits

It is straightforward to add fits from statistical models to a ggplot object, for instance the object

g created in Fig 7.6. These can include conventional general linear models and locally fitted

models, like Generalized Additive Models (GAMs) and locally weighted scatterplot smoothers



7.3. GGPLOT2 211

(LOWESS), that allow the association between x and y to “speak for itself” without the assump-

tion of underlying global linear association (Aho, 2014). By default, geom_smooth() provides
a LOWESS fit using the function loess() from the R distribution stats package. The code

geom_smooth(method = "lm") fits a general linear model, in this case, a simple linear regres-

sion (Fig 7.8). By default, error polygons are included with fits that represent 95% confidence

intervals for the true fitted value. These can be turned off by specifying geom_smooth(se =
FALSE).

g + geom_smooth(method = "lm") # call to lm fit

1e−01

1e+01

1e+03

1e+09 1e+10 1e+11 1e+12

GDP (international dollars)

C
O

2 
E

m
is

si
on

s 
(m

et
ric

 to
ns

 x
 1

06 )

Figure 7.8: A regression model overlaid on Fig reffig:gscat1.

7.3.9 Annotations in Graphs

The ggplot2 package has nice functions for graph annotation. In Fig ??we use the function

geom_label() to label countries. The arguments nudge_y and nudge_x allow adjustments to

label locations.



212 CHAPTER 7. GRID GRAPHICS, INCLUDING GGPLOT2

1 sub <- country.data |>
2 filter(country %in% c("Canada", "Finland",
3 "Japan", "Kenya", "United States"))
4

5 g + geom_point(size = 3, shape = 1, data = sub, col = "orange") +
6 geom_label(aes(label = country), data = sub, nudge_y = .25,
7 nudge_x = -.25, alpha = .9, colour = "orange")

Canada

Finland

Japan

Kenya

United States

1e−01

1e+01

1e+03

1e+09 1e+10 1e+11 1e+12

GDP (international dollars)

C
O

2 
E

m
is

si
on

s 
(m

et
ric

 to
ns

 x
 1

06 )

Figure 7.9: Country annotations added to Fig 7.6.

The ggpmisc package allows annotation of statistical models in a ggplot. This is accomplished

using the function ggpmisc::stat_poly_eq()which fits a model usingstats::lm(), com-

putes model quantities and prepares tidy text summaries of the model including the model

equation, test statistic values and 𝑝-values. Computed terms are called using the ggplot2 func-

tion after_stat(), which delays aesthetic mapping in aes() until after statistic calculation.

In Fig 7.10, the equation for the world.emissions regression model is placed in the

figure with after_stat(eq.label), and the adjusted 𝑅2 (Aho, 2014) is placed using



7.3. GGPLOT2 213

after_stat(adj.rr.label). A complete list of available computed terms, including

eq.label and adj.rr.label, is given in the documentation for stat_poly_eq().

1 library(ggpmisc)
2

3 g + geom_smooth(method = "lm") +
4 stat_poly_eq(aes(label = paste(after_stat(eq.label),
5 after_stat(adj.rr.label),
6 sep = "*\", \"*")))

y = − 10.8 + 1.11 x, Radj
2  = 0.91

1e−01

1e+01

1e+03

1e+09 1e+10 1e+11 1e+12

GDP (international dollars)

C
O

2 
E

m
is

si
on

s 
(m

et
ric

 to
ns

 x
 1

06 )

Figure 7.10: Regression model summaries overlaid on Fig 7.6.

A potential criticism of ggplot2 is that its graphical rendering approaches are not readily

accessible (as code or output), and statistical summaries are often not adequately or clearly

described (in documentation or output). For instance, when using geom_smooth() it is unclear
which default smoothing parameters are actually being used, although these can be set within

geom_smooth() The function ggplot2::ggplot_build() provides underlying plotting de-
tails. For example

head(ggplot_build(g)$data[[1]])

y x PANEL group shape colour size fill alpha stroke
1 0.40732 10.494 1 -1 19 black 2 NA NA 0.5
2 0.51149 10.085 1 -1 19 black 2 NA NA 0.5



214 CHAPTER 7. GRID GRAPHICS, INCLUDING GGPLOT2

3 1.63089 11.428 1 -1 19 black 2 NA NA 0.5
4 -0.31447 NA 1 -1 19 black 2 NA NA 0.5
5 1.00675 10.642 1 -1 19 black 2 NA NA 0.5
6 -0.95782 NA 1 -1 19 black 2 NA NA 0.5

The gginnards package can be used to generate accessible ggplot analytical information. This

can be done by calling gginnards::geom_debug()within ggpmisc::stat_poly_eq().

As an example, recall that a log10 − log10 transformation was used to generate the scatterplot

object, g, used to project Fig 7.6. I can summarize the linear model, overlaid in Fig 7.8, with

the code:

1 library(gginnards)
2 g + stat_poly_eq(formula = y ~ x, geom = "debug",
3 output.type = "numeric",
4 summary.fun = function(x) x[["coef.ls"]])

[1] "PANEL 1; group(s) -1; 'draw_function()' input 'data' (head):"
npcx npcy label

1 NA NA
coef.ls

1 -1.0801e+01, 1.1109e+00, 2.8430e-01, 2.6794e-02, -3.7990e+01, 4.1462e+01, 1.3821e-82, 3.6215e-88
coefs r.squared rr.confint.level rr.confint.low

1 -10.8005, 1.1109 0.91388 0.95 0.89056
rr.confint.high adj.r.squared f.value f.df1 f.df2 p.value AIC

1 0.92912 0.91335 1719.1 1 162 3.6215e-88 30.353
BIC n rr.label b_0.constant b_0 b_1 fm.method fm.class

1 39.652 164 FALSE -10.801 1.1109 lm:qr lm
fm.formula fm.formula.chr x y PANEL group orientation

1 y ~ x y ~ x 8.3836 3.2706 1 -1 x

This is in accordance with the linear model log10(CO2) = −10.800518 + 1.110939 log10(GDP)
obtained using the base function lm().

model <- lm(log(co2, base = 10) ~ log(gdp, base = 10), data = country.data)
coef(model)

(Intercept) log(gdp, base = 10)
-10.8005 1.1109

7.3.10 Secondary Axes

Secondary axes can be difficult to implement in ggplot2 because they require user specification

of a one-to-one transformation for the primary axis.

Example 7.5.

To demonstrate the generation of ggplot secondary axes, we will examine two datasets pub-

lished by Rubino et al. (2013) concerning CO2 and 𝛿13C trapped in Antarctic ice layers. We

wish to simultaneously plot CO2 and 𝛿13C of as a function of the age of the depositional layer.

We will use the primary (left-hand) vertical axis to plot CO2 and the use the right hand axis for

𝛿13C. We first create a composite dataset for years in which both CO2 and 𝛿13C were measured.



7.3. GGPLOT2 215

1 data(Rabino_CO2); data(Rabino_del13C)
2 # Match 1st dataset with 2nd
3 w <- which(Rabino_CO2$effective.age %in% Rabino_del13C$effective.age)
4 R.C <- Rabino_CO2[w,]
5 # match 2nd dataset with 1st
6 w <- which(Rabino_del13C$effective.age %in% R.C$effective.age)
7 R.d <- Rabino_del13C[w,]
8 data.C <- data.frame(CO2 = tapply(R.C$CO2, R.C$effective.age, mean),
9 d13C = tapply(R.d$d13C.CO2, R.d$effective.age, mean),

10 year = as.numeric(levels(factor(R.d$effective.age))))

For the years (ice depths) under consideration, CO2 levels vary between approximately 271

and 368 ppm. A range of around 100 ppm.

data.C |>
reframe(range_ppm = range(CO2, na.rm = T))

range_ppm
1 277.16
2 368.02

Experimentation using simple linear transformations (additions and/or multiplications to a

variable), reveals that a similar range can be generated for 𝛿13C following the transformation:

𝑦′ = 56 ⋅ 𝑦 + 729.

data.C |>
reframe(range_ppm = range((d13C * 56) + 729, na.rm = T))

range_ppm
1 277.11
2 373.34

Thus, we create:

1 data.C$td13C <- data.C$d13C * 56 + 730

and use it in the ggplot code below. A scatterplot of the data is shown in Fig 7.11.

2 ggplot(data.C, aes(x = year, y = CO2)) +
3 geom_point(colour = "blue", size = 2.7, alpha = 0.2) +
4 theme_classic() +
5 margin_theme() +
6 ylab(expression(paste("C",O[2], " (ppm)"))) +
7 geom_point(data = data.C, aes(x = year, y = td13C), colour = "red",
8 size = 2.7, alpha = 0.2) +
9 scale_y_continuous(sec.axis =



216 CHAPTER 7. GRID GRAPHICS, INCLUDING GGPLOT2

10 sec_axis(~ (. - 730)/56,
11 name = expression(paste(delta^13,
12 "C (\u2030)")))) +
13 theme(axis.text.y.right = element_text(colour = "red")) +
14 theme(axis.text.y.left = element_text(colour = "blue")) +
15 theme(axis.title.y.right = element_text(colour = "red")) +
16 theme(axis.title.y.left = element_text(colour = "blue")) +
17 theme(axis.line.y.right = element_line(colour = "red")) +
18 theme(axis.line.y.left = element_line(colour = "blue")) +
19 theme(axis.ticks.y.right = element_line(colour = "red")) +
20 xlab("Year")

275

300

325

350

375

−8.0

−7.5

−7.0

−6.5

1000 1250 1500 1750 2000

Year

C
O

2 
(p

pm
) δ

13C
 (‰

)

Figure 7.11: A graphical representation of data published by Rubino et al. (2013), using two

vertical axes.

There were two vital steps for creating the secondary axis.

• First, as a preliminary step we transformed the raw 𝛿13C data to allow plotting 𝛿13C
points in the range of CO2 observations (Line 1). The result is the object data.C$td13C.



7.3. GGPLOT2 217

• Second, in the figure code above we scale the secondary axis based on a back-

transformation of the transformed data. That is, we solved for 𝑦 in 𝑦′ = 56 ⋅ 𝑦 + 730
and found 𝑦 = (𝑦′ − 730)/56. This is what underlies the code on Line 9: sec.axis
= sec_axis(~ (. - 730)/56, in the first argument of sec_axis(). Note that axis

components were painstakingly colored using ggplot::theme() (Lines 12-19).

�

7.3.11 Defining Graphical Features using Vectors

As we have already seen, it is straightforward to define figure plotting characteristics (symbols,

symbol sizes, colors, line types, etc.) using relevant data.

Example 7.6.

In Fig 7.12 we change symbols and colors for a representation of the asbio::fly.sex dataset
based on experimental treatments:

25

50

75

100

0.7 0.8 0.9

Thorax length (mm)

Lo
ng

ev
ity

 (
D

ay
s)

Treatment

1

2

3

4

5

Figure 7.12: A representation of the fly.sex dataset.



218 CHAPTER 7. GRID GRAPHICS, INCLUDING GGPLOT2

Note that the linear fits in Fig 7.12 are actually for separate regression models, longevity ~
thorax, for each level in fly.sex$Treatment. They are not from the single ANCOVAmodel:

lm(longevity ~ thorax * Treatment), although this is not clear at all from the ggplot
graph. It is, however, revealed from:

g1 + stat_poly_eq(formula = y ~ x, geom = "debug",
output.type = "numeric",
summary.fun = function(x) x[["coef.ls"]])

`geom_smooth()` using formula = 'y ~ x'

[1] "PANEL 1; group(s) 1, 2, 3, 4, 5; 'draw_function()' input 'data' (head):"
npcx npcy label

1 NA NA
2 NA NA
3 NA NA
4 NA NA
5 NA NA

coef.ls
1 -5.5699e+01, 1.4779e+02, 1.6834e+01, 2.0795e+01, -3.3087e+00, 7.1071e+00, 3.0654e-03, 3.0692e-07
2 -5.0242e+01, 1.3613e+02, 2.4519e+01, 2.9186e+01, -2.0491e+00, 4.6640e+00, 5.2023e-02, 1.0753e-04
3 -43.7248157, 131.4496314, 31.3250601, 37.8123482, -1.3958414, 3.4763678, 0.1760921, 0.0020423
4 -5.7992e+01, 1.3700e+02, 2.8260e+01, 3.3625e+01, -2.0521e+00, 4.0744e+00, 5.1714e-02, 4.6763e-04
5 -6.1280e+01, 1.2500e+02, 1.5225e+01, 1.8944e+01, -4.0250e+00, 6.5983e+00, 5.2871e-04, 9.8692e-07

coefs r.squared rr.confint.level rr.confint.low
1 -55.699, 147.790 0.68712 0.95 0.418224
2 -50.242, 136.127 0.48607 0.95 0.169020
3 -43.725, 131.450 0.34445 0.95 0.058492
4 -57.992, 137.001 0.41920 0.95 0.110089
5 -61.28, 125.00 0.65433 0.95 0.370279

rr.confint.high adj.r.squared f.value f.df1 f.df2 p.value AIC
1 0.79674 0.67352 50.511 1 23 3.0692e-07 180.72
2 0.66239 0.46373 21.753 1 23 1.0753e-04 199.31
3 0.56048 0.31595 12.085 1 23 2.0423e-03 202.90
4 0.61539 0.39395 16.600 1 23 4.6763e-04 197.51
5 0.77529 0.63930 43.538 1 23 9.8692e-07 174.04

BIC n rr.label b_0.constant b_0 b_1 fm.method fm.class
1 184.38 25 FALSE -55.699 147.79 lm:qr lm
2 202.96 25 FALSE -50.242 136.13 lm:qr lm
3 206.56 25 FALSE -43.725 131.45 lm:qr lm
4 201.16 25 FALSE -57.992 137.00 lm:qr lm
5 177.69 25 FALSE -61.280 125.00 lm:qr lm

fm.formula fm.formula.chr x y group PANEL orientation
1 y ~ x y ~ x 0.64 97.00 1 1 x
2 y ~ x y ~ x 0.64 92.95 2 1 x
3 y ~ x y ~ x 0.64 88.90 3 1 x
4 y ~ x y ~ x 0.64 84.85 4 1 x
5 y ~ x y ~ x 0.64 80.80 5 1 x

�

7.3.12 Modifying Legends

Note that a legend was created for Fig 7.12 because of designation of groups in the initial

aesthetics. Legend characteristics generally need to be modified using theme(). For instance,
to change the legend location from the right-hand side of the plot to the the left-hand side, I

could use:



7.3. GGPLOT2 219

g1 + theme(legend.position = "left")

7.3.13 Multiple plots

We can placemultiple ggplots into a single graphics device using several approaches. I consider

two here: 1) facet functions from the ggplot2 package, and 2) ggplot extension functions from

the package cowplot.

7.3.13.1 Faceting

The functions facet_wrap() and facet_grid() can be used to generate a sequence of plot

panels.

Example 7.7.

I will modify Fig 7.12 to demonstrate the use of facet_wrap().

1 g1 <- ggplot(fly.sex, aes(y = longevity, x = thorax,
2 group = Treatment)) +
3 geom_point(aes(colour = Treatment, shape = Treatment)) +
4 facet_wrap(vars(Treatment)) +
5 theme_classic() +
6 margin_theme() +
7 geom_smooth(method = "lm", se = F, aes(colour = Treatment)) +
8 labs(x = "Thorax length (mm)", y = "Longevity (Days)")
9 g1

`geom_smooth()` using formula = 'y ~ x'



220 CHAPTER 7. GRID GRAPHICS, INCLUDING GGPLOT2

4 5

1 2 3

0.7 0.8 0.9 0.7 0.8 0.9

0.7 0.8 0.9

25

50

75

100

25

50

75

100

Thorax length (mm)

Lo
ng

ev
ity

 (
D

ay
s)

Treatment

1

2

3

4

5

Figure 7.13: Demonstration of facet wrapping using the fly.sex dataset.

On Line 4 I specify that different panels should be created for each treatment level

using: facet_wrap(vars(Treatment)). This could also be accomplished using:

facet_wrap(~Treatment).

�

7.3.13.2 cowplot functions

Multiple plots can also be assembled into a single graphical entity using functions from the

cowplot package. This requires creating separate plot objects and concatenating them in

cowplot::plot_grid().

Example 7.8.

Fig 7.14 shows summaries of US per capita CO2 emissions and GDP since the start of the

industrial revolution with two plots.



7.3. GGPLOT2 221

1 library(cowplot)
2 US <- world.emissions |>
3 filter(country == "United States")
4

5 g2 <- ggplot(US) +
6 geom_line(aes(year, co2/population), col = "dark red") +
7 theme_classic() + margin_theme() +
8 theme(axis.text.x = element_text(angle = 50, hjust = 1, vjust = 0.9)) +
9 labs(x = "Year",

10 y = expression(paste("Per capita ", CO[2],
11 " emissions (tonnes x ", 10^6, ")")))
12

13 g3 <- ggplot(US) +
14 geom_line(aes(year, gdp/population), col = "blue") +
15 theme_classic() + margin_theme() +
16 theme(axis.text.x = element_text(angle = 50, hjust = 1, vjust = 0.9)) +
17 labs(x = "Year", y = expression(paste("Per capita GDP")))
18

19 plot_grid(g2, g3)



222 CHAPTER 7. GRID GRAPHICS, INCLUDING GGPLOT2

0.0e+00

5.0e−06

1.0e−05

1.5e−05

2.0e−05

18
00

18
50

19
00

19
50

20
00

Year

P
er

 c
ap

ita
 C

O
2 

em
is

si
on

s 
(t

on
ne

s 
x 

10
6 )

0

10000

20000

30000

40000

50000

18
00

18
50

19
00

19
50

20
00

Year

P
er

 c
ap

ita
 G

D
P

Figure 7.14: Two plots depicting US per capita trends in CO2 emissions and GDP.

The function plot_grid is used on Line 17 to conjoin the ggplot objects g2 and g3.

�

7.3.14 Univariate Distributional Summaries

A number of ggplot2 functions can be used to graphically summarize distributions of variables.

These include geom_hist() for histograms, geom_area() for area plots, geom_freq() for

frequency plots, geom_dotplot() for dot plots, and geom_density() for density plots.

Example 7.9.

Fig 7.15 provides a multi-plot distributional summary of the US CO2 data using a histogram,

an area plot, and a frequency plot. These are created as separate ggplot objects.

1 xlab <- expression(paste(CO[2], " Emissions (metric tons x ", 10^6, ")"))
2 Years <- factor(c(rep("1800-1854", 55), rep("1854-1908", 55),
3 rep("1908-1962", 55), rep("1962-2019", 55)))



7.3. GGPLOT2 223

4

5 margin_theme2 <- function(){
6 theme(axis.title.y = element_text(hjust=0.6, vjust = 2.8, size = 10),
7 plot.margin = margin(t = 7.5, r = 7.5, b = 7.5, l = 15))
8 }
9

10 histogram <- ggplot(US, aes(co2, fill = Years)) +
11 geom_histogram(binwidth = 500) +
12 theme_classic() +
13 scale_fill_brewer(palette = "Blues") +
14 xlab(xlab) + ylab("Frequency") +
15 margin_theme()
16

17 areaplot <- ggplot(US, aes(co2, fill = Years)) +
18 geom_area(stat="bin") +
19 theme_classic() +
20 scale_fill_brewer(palette = "Spectral") +
21 xlab("") + ylab("Frequency") +
22 margin_theme2()
23

24 freqplot <- ggplot(US, aes(co2, colour = Years)) +
25 geom_freqpoly() +
26 theme_classic() +
27 scale_fill_brewer(palette = "Spectral") +
28 xlab("") + ylab("") +
29 margin_theme2()

The histogram, area plot, and frequency plot are created on Lines 10-15, 17-22, 24-

29, respectively. Note the use of a second margin theme (Lines 5-8) and the use of

ggplot2::scale_fill_brewer() to define specific RColorBrewer color palettes.

The plots are conjoined, with the area plot and frequency plot splitting the first row, and the his-

togramoccupying the entire second rowof the graphical device using cowplot::plot_grid().

title <- ggdraw() + draw_label(expression(paste(CO[2] , " in the US")),
fontface='bold')

top_row <- plot_grid(areaplot, freqplot, ncol = 2, labels = "AUTO")

plot_grid(title, top_row, histogram, rel_heights = c(0.2, 1, 1.2),
hjust = c(0,0,-0.6), nrow = 3, labels = c("", "", "C"))



224 CHAPTER 7. GRID GRAPHICS, INCLUDING GGPLOT2

CO2 in the US

0

20

40

60

0 2000 4000 6000

F
re

qu
en

cy
Years

1800−1854

1854−1908

1908−1962

1962−2019

A

0

20

40

0 200040006000

Years

1800−1854

1854−1908

1908−1962

1962−2019

B

0

20

40

60

80

0 2000 4000 6000

CO2 Emissions (metric tons x 106)

F
re

qu
en

cy

Years

1800−1854

1854−1908

1908−1962

1962−2019

C

Figure 7.15: Distributional summaries of the US CO2 data from asbio::world.emissions.

�

7.3.15 Barplots

Barplots are straightforward to create in ggplot2 using the function geom_bar().

Example 7.10.

Consider the asthma dataframe from asbio. We first convert the time series to a long table

format using reshape2::melt(), and summarize it using dplyr::summarise().

1 library(reshape2); data(asthma)
2 asthma.long <- asthma |> melt(id = c("DRUG", "PATIENT"),
3 value.name = "FEV1",
4 variable.name = "TIME")
5

6 asthma.long$TIME <- factor(asthma.long$TIME,
7 labels = c("BASE",



7.3. GGPLOT2 225

8 paste("H", 11:18, sep = "")))
9

10 summary.FEV <- asthma.long |>
11 group_by(TIME, DRUG) |>
12 summarise(mean = mean(FEV1),
13 se = sd(FEV1)/sqrt(length(FEV1)),
14 meanmse = mean - se,
15 meanpse = mean + se)

In the code for Fig 7.16 below, I group by drug treatments group = DRUG (line one) and plot

bars using the mean values from summary.FEV using ggplot2::geom_bar() (Line 6). The
argument stat = "identity" allows bar heights to be represented by individual numbers,

in this case means. Use of stat = "identity" is required here. The argument position =
"dodge" creates side by side bar plots (Line 6).

1 g <- ggplot(summary.FEV, aes(x = TIME, y = mean, group = DRUG)) +
2 margin_theme() +
3 labs(y = "Forced Expiratory Volume (1 min)",
4 x = "Time Period")
5

6 g + geom_bar(stat = "identity", position = "dodge", aes(fill = DRUG))



226 CHAPTER 7. GRID GRAPHICS, INCLUDING GGPLOT2

0

1

2

3

BASE H11 H12 H13 H14 H15 H16 H17 H18

Time Period

F
or

ce
d 

E
xp

ira
to

ry
 V

ol
um

e 
(1

 m
in

)

DRUG

a

c

p

Figure 7.16: Barplot of the asthma data.

�

7.3.16 Interval Plots

The ggplot2 package allows implementation of interval plots.

Example 7.11.

As an initial demonstration of interval plots, we continue use of barplots from Example 7.10.

Overlaying errors on barplots requires the use of stat_summary() (Line 1) in the code below.

Outcomes from meanmse and meanpse in the summary.FEV dataset represent ̄𝑥 − 𝑆𝐸 and

̄𝑥 + 𝑆𝐸, respectively. These will define the lower and upper values of the error bars in interval

plot. They are called in the arguments ymin and ymax in the aesthetics of geom_errorbar()
(Line 5). The background color of the plot is changed on Line 4. The final result is shown in

Fig 7.17.

1 g + stat_summary(fun = "identity", geom = "bar",
2 position = position_dodge(width = .9),



7.3. GGPLOT2 227

3 aes(colour = DRUG), fill = "white") +
4 theme(panel.background = element_rect(fill = gray(0.8))) +
5 geom_errorbar(aes(ymin = meanmse, ymax = meanpse, colour = DRUG),
6 width = 0.2, position = position_dodge(.9))

0

1

2

3

4

BASE H11 H12 H13 H14 H15 H16 H17 H18

Time Period

F
or

ce
d 

E
xp

ira
to

ry
 V

ol
um

e 
(1

 m
in

)

DRUG

a

c

p

Figure 7.17: Error bars overlaid on a bar plot of the asthma data.

�

Example 7.12.

Next we consider overlaying intervals on a line plot Fig (7.18). In the code below, lines connect

points at treatment means (Lines 2-3).

1 g + geom_point(size = 2, aes(colour = DRUG)) +
2 geom_line(aes(lty = DRUG, colour = DRUG)) +
3 theme_classic() +
4 margin_theme() +
5 geom_errorbar(aes(ymin = meanmse, ymax = meanpse, colour = DRUG),
6 width = 0.2)



228 CHAPTER 7. GRID GRAPHICS, INCLUDING GGPLOT2

2.5

3.0

3.5

BASE H11 H12 H13 H14 H15 H16 H17 H18

Time Period

F
or

ce
d 

E
xp

ira
to

ry
 V

ol
um

e 
(1

 m
in

)

DRUG

a

c

p

Figure 7.18: Error bars overlaid on a line plot of the asthma data.

�

Example 7.13.

Other geoms can be used to create interval plots, including the ggplot2 function

geom_crossbar(). In Fig 7.19 we show both raw data and summary standard error

crossbars.

g + geom_crossbar(aes(ymin = meanmse, ymax = meanpse, colour = DRUG,
fill = DRUG), alpha = .2) +

geom_point(data = asthma.long, aes(y = FEV1, x = TIME, colour = DRUG))



7.3. GGPLOT2 229

1

2

3

4

5

BASE H11 H12 H13 H14 H15 H16 H17 H18

Time Period

F
or

ce
d 

E
xp

ira
to

ry
 V

ol
um

e 
(1

 m
in

)

DRUG

a

c

p

Figure 7.19: Error cross bars overlaid on the asthma data.

Note that individual data points are rather difficult to distinguish in Fig 7.19. As a solution we

could plot points using using transparent colors, or jitter points with respect to the 𝑥-axis (Fig
7.20).

g + geom_crossbar(aes(ymin = meanmse, ymax = meanpse, colour = DRUG,
fill = DRUG), alpha = .2) +

geom_jitter(data = asthma.long, aes(y = FEV1, x = TIME, colour = DRUG),
alpha = .4, width = 0.15) +

theme_classic()



230 CHAPTER 7. GRID GRAPHICS, INCLUDING GGPLOT2

1

2

3

4

5

BASE H11 H12 H13 H14 H15 H16 H17 H18
Time Period

F
or

ce
d 

E
xp

ira
to

ry
 V

ol
um

e 
(1

 m
in

)

DRUG

a

c

p

Figure 7.20: Jitter and transparency added to points in Fig ??fig:cb).

�

7.3.16.1 Pairwise Comparisons

Results of statistical pairwise comparisons can be overlain on ggplot2 rendered boxplots

and interval plots using a number of approaches. The package ggpubr (Kassambara, 2023)

generates ggplot2-based “publication ready plots’ ’, including interval plots showing pairwise

comparisons. Examples given here largely follow those in the documentation for ggpubr.

Example 7.14.

Crampton et al. (1947) measured the lengths of odontoblasts (cells responsible for tooth

growth) in 60 guinea pigs with respect to three dosage levels of vitamin C (0.5, 1, and 2

mg/day), and two delivery methods, orange juice (OJ) or ascorbic acid (VC). The data are in the

dataframe ToothGrowth from the package datasets. In ToothGrowth dose contains dosages
and supp contains delivery levels.



7.3. GGPLOT2 231

1 library(ggpubr)
2 df <- ToothGrowth
3 df$dose <- as.factor(df$dose)
4

5 bxp <- ggboxplot(
6 df, x = "dose", y = "len",
7 color = "supp", palette = c("#00AFBB", "#E7B800")) +
8 ylab(expression(paste("Odontoblast length (", mu,"g)"), sep = "")) +
9 xlab("Dosage (mg/day)") +

10 guides(color=guide_legend("Delivery:")) +
11 scale_y_continuous(expand = expansion(mult = c(0.05, 0.10)))
12

13 bxp + geom_pwc(
14 aes(group = supp), tip.length = 0,
15 method = "t_test", label = "{p.adj.format}{p.adj.signif}",
16 p.adjust.method = "bonferroni", p.adjust.by = "panel",
17 hide.ns = TRUE
18 )

In the code above, we have the following important steps:

• On Lines 1-3, I bring in the ggpubr package (Line 1), rename the dataframe ToothGrowth
to be df and coerce the dose column to be a factor.

• On Lines 5-7, I use the function ggpubr::ggboxplot() to define basic plot characteris-
tics.

• On Lines 8-11, nuances are added to the plot including customized axis labels (Lines

8-9), a customized legend title (Line 10), and an alteration to the axis scale (Line 11).

• On Lines 13-18, annotations for pairwise comparisons of delivery methods (OJ and VC)
within dosages are added to the graph using the function ggpubr::geom_pwc().

• On Line 14, I specify that I want delivery methods (in supp) compared, and indicate that

I don’t want lines extending to the compared levels from the label lines (for comparison,

see Fig 7.23).

• On Line 15, I indicate the type of test to be used in delivery method comparisons, and the

labeling format. "{p.adj.format}{p.adj.signif}" indicates that both the adjusted

p-value and the significance level for the adjusted p-value should be printed.

• On Lines 16-17, I specify use of the Bonferroni correction for simultaneous inference for

three tests, and to not print results that are non-significant.

The result is shown in Fig 7.21.



232 CHAPTER 7. GRID GRAPHICS, INCLUDING GGPLOT2

0.0191* 0.0031**

10

20

30

0.5 1 2

Dosage (mg/day)

O
do

nt
ob

la
st

 le
ng

th
 (

µm
)

Delivery: OJ VC

Figure 7.21: Boxplot showing pairwise comparison of delivery levels in dosage for the

Toothgrowth dataframe.

Below we consider a more complex example that compares both delivery methods (supp) and
dosage levels (dose). This is accomplished by applying ggpubr::geom_pwc() twice (Lines

3-7 and Lines 11-15) and printing both results (Fig 7.22).

1 # 1. Add p-values of OJ vs VC in each dose group
2 bxp.complex <- bxp +
3 geom_pwc(
4 aes(group = supp), tip.length = 0,
5 method = "t_test", label = "p.adj.format",
6 p.adjust.method = "bonferroni", p.adjust.by = "panel"
7 )
8 # 2. Add pairwise comparisons between dose levels
9 # Nudge up the brackets by 20% of the total height

10 bxp.complex <- bxp.complex +



7.3. GGPLOT2 233

11 geom_pwc(
12 method = "t_test", label = "p.adj.format",
13 p.adjust.method = "bonferroni",
14 bracket.nudge.y = 0.2
15 )
16 # 3. Display the plot
17 bxp.complex

0.0191 0.0031 1

<0.0001

<0.0001

<0.0001

10

20

30

40

50

0.5 1 2

Dosage (mg/day)

O
do

nt
ob

la
st

 le
ng

th
 (

µm
)

Delivery: OJ VC

Figure 7.22: Boxplot showing pairwise comparison of delivery levels and delivery levels in

dosage for the Toothgrowth dataframe.

In the codebelow,we create an interval plotwith abarplot appearanceusingggpubr::ggbarplot()
(Fig 7.23. Note that this requires a different approach for customizing the title of the legend

(Line 7).



234 CHAPTER 7. GRID GRAPHICS, INCLUDING GGPLOT2

1 bp <- ggbarplot(
2 df, x = "supp", y = "len", fill = "dose",
3 palette = "npg", add = "mean_sd",
4 position = position_dodge(0.8)) +
5 ylab(expression(paste("Odontoblast length (", mu,"m)"), sep = "")) +
6 xlab("Delivery method") +
7 scale_fill_discrete(name = "Dosage:")
8

9 bp +
10 geom_pwc(
11 aes(group = dose), tip.length = 0.05,
12 method = "t_test", label = "p.signif",
13 bracket.nudge.y = -0.08
14 ) +
15 scale_y_continuous(expand = expansion(mult = c(0, 0.1)))



7.3. GGPLOT2 235

****

****

*

****

****

****

0

10

20

30

40

OJ VC

Delivery method

O
do

nt
ob

la
st

 le
ng

th
 (

µm
)

Dosage: 0.5 1 2

Figure 7.23: Barplot showing pairwise comparison of dosage levels in delivery methods for

the Toothgrowth dataframe. Bar heights are means, errors are standard deviations.

�



236 CHAPTER 7. GRID GRAPHICS, INCLUDING GGPLOT2

CAUTION!

The function ggpubr::geom_pwc() can be potentially misused, illustrating the need

for clear explanations (or understanding) when applying statistical algorithms. The

default test specification in geom_pwc() is the Wilcox test, which will seldom be the

most powerful method for comparing shifts in location for treatments (although it is

strongly resistant to violations of normality). The argument test = t_test (specified
in Figs 7.21-7.23) runs 𝑡-tests in isolation for each pairwise comparison, and thus will

not utilize an omnibus ANOVAmean squared error, reducing power. The Bonferroni

𝑝-value adjustment method used in Figs 7.21-7.23 is also famous for its low power.

Given this situation, it may be most prudent to use ggpubr::geom_pwc() as a graph-
ical framework into which summaries, including 𝑝-values can be inserted manually.

This can be done with the function ggpubr::stat_pvalue_manual()whose usage is
demonstrated here.

7.3.17 Trellis Plots with Faceting

Like the package lattice, ggplot2 contains functions for making trellis plots. We will use this

approach to examine individual patient responses over time in the asthma dataset.

# subset data to allow readable plots
asthma.long.a <- asthma.long |>

filter(PATIENT %in% 201:208)

Trellising can be enabled by using the ggplot2 functions facet_wrap() and facet_grid().
In Fig 7.24 we define faceting within facet_grid() using the PATIENT column in the data

subset asthma.long.a. The function ggplot2::vars() in facet_grid() is analogous to the
use of aes() in geoms.

1 g <- ggplot(asthma.long.a, aes(y = FEV1, x = TIME, colour = DRUG,
2 group = DRUG)) +
3 geom_point() +
4 geom_line() +
5 theme_light() + margin_theme() +
6 theme(axis.text.y = element_text(size=rel(0.7))) +
7 facet_grid(rows = vars(PATIENT)) +
8 scale_colour_brewer(palette = "Dark2") +
9 ylab("Forced Expiratory Volume (1 min)") +

10 xlab("Time period")
11 g

https://www.datanovia.com/en/blog/how-to-add-p-values-to-ggplot-facets/


7.3. GGPLOT2 237

201
202

203
204

205
206

207
208

BASE H11 H12 H13 H14 H15 H16 H17 H18

2
3
4

2

3
4

2
3

4

2
3

4

2

3
4

2

3
4

2
3

4

2
3
4

Time period

F
or

ce
d 

E
xp

ira
to

ry
 V

ol
um

e 
(1

 m
in

)

DRUG

a

c

p

Figure 7.24: A trellis plot showing individual patient responses over time from the asthma
dataset.

7.3.18 Multivariate Distributional Summaries

Bivariate summaries can be shown in many ways using a ggplot2 approach.

Example 7.15.

In Fig 7.25 I insert density grobs (graphical objects) on the margins of a scatterplot for

five European countries using the cowplot functions axis_canvas(), insert_xaxis_grob(),
insert_xaxis_grob(), and gg_draw(). The right margin shows GDP distributions for each

country, whereas the top margin shows CO2 emission distributions for each country. I also

change symbol sizes with year in the main graph. Specifically, larger symbols indicate more

recent years.



238 CHAPTER 7. GRID GRAPHICS, INCLUDING GGPLOT2

1 europe <- world.emissions |>
2 filter(country == c("France", "Italy", "Germany", "United Kingdom")) |>
3 filter(year <= 2019 & year > 1950) # comparable data
4

5 pmain <- ggplot(europe, aes(x=co2, y=gdp, color= country)) +
6 geom_point(aes(size = year), alpha = .6) +
7 xlab(xlab) + ylab("GDP (International dollars)") +
8 margin_theme() +
9 theme_classic()

10

11 xdens <- axis_canvas(pmain, axis = "x") +
12 geom_density(data = europe, aes(x = co2, fill = country), alpha=0.6,
13 size=.2)
14

15 ydens <- axis_canvas(pmain, axis = "y") +
16 geom_density(data = europe, aes(y = gdp, fill = country), alpha=0.6,
17 size=.2)
18

19 p1 <- insert_xaxis_grob(pmain, xdens, grid::unit(.2, "null"),
20 position = "top")
21 p2 <- insert_yaxis_grob(p1, ydens, grid::unit(.2, "null"),
22 position = "right")
23 ggdraw(p2)



7.3. GGPLOT2 239

1e+12

2e+12

3e+12

300 600 900

CO2 Emissions (metric tons x 106)

G
D

P
 (

In
te

rn
at

io
na

l d
ol

la
rs

)

country

France

Germany

Italy

United Kingdom

year

1960

1980

2000

Figure 7.25: Bivariate summaries for European countries from the asbio::world.emissions
dataset.

�

7.3.19 Maps

The ggplot2 ecosystem has some support for mapping, including import of ARC-GIS shape files,

and creation of map polygons. The function sf::st_read() allows loading of simple spatial

features, including shapefiles, and the package ggspatial provides a number for creating useful

maps under a ggplot2 framework.

Example 7.16.

As an example we will create a map of a small stream network in southwest Idaho named

Murphy Creek. Data concerning the creek, including shapefiles, is contained in the package

streamDAG (Aho et al., 2023b).

library(sf); library(ggspatial); library(streamDAG)
mur_sf <- st_read(system.file("shape/Murphy_Creek.shp",



240 CHAPTER 7. GRID GRAPHICS, INCLUDING GGPLOT2

package="streamDAG"))
data(mur_coords)
coords <- mur_coords[,c(2,3)]

Reading layer `Murphy_Creek' from data source
`C:\Users\ahoken\AppData\Local\R\win-library\4.4\streamDAG\shape\Murphy_Creek.shp'
using driver `ESRI Shapefile'

Simple feature collection with 2 features and 2 fields
Geometry type: LINESTRING
Dimension: XY
Bounding box: xmin: 512860 ymin: 4789000 xmax: 514720 ymax: 4789300
Projected CRS: NAD83 / UTM zone 11N

The function ggplot2::geom_sf() (Line 2 below) can be used to draw different geometric

objects depending on features present in the data, e.g., points, lines, or polygons. For the

current case a line is generated. The function ggplot2::expand_limits() (Line 6) is used to
increase the spatial range of the 𝑦-axis which otherwise would be extremely narrow (since a

singleW to E trending line, representing thewatershed, is being generated by geom_sf()). The
ggspatial functions annotation_scale() and annotation_north_arrow() provide spatially
explicit scalebars and north-indicating arrows, respectively (Lines 8-9). The final product is

shown in Fig 7.26.

1 g <- ggplot(mur_sf) +
2 geom_sf(colour = "lightblue", lwd = 2) +
3 theme_classic() +
4 geom_point(data = coords, aes(x = E, y = N), shape = 21,
5 fill = "orange", size = 2.5) +
6 expand_limits(y = c(4788562,4789700)) +
7 ylab("") + xlab("") +
8 annotation_scale() +
9 annotation_north_arrow(pad_x = unit(10.5, "cm"), pad_y = unit(6.6, "cm"))

10 g



7.3. GGPLOT2 241

500 m

N

43.250°N

43.252°N

43.254°N

43.256°N

43.258°N

43.260°N

116.840°W 116.835°W 116.830°W 116.825°W 116.820°W

Figure 7.26: Map of the Murphy Creek drainage system in southwest Idaho (outlet coordinates:

43.71839 oN, 116.13747 oW).

�

7.3.20 Animation

Animations in ggplot2 can be created using looping strategies applied in Ch 6. Looping will be

explicitly considered in the context of functions in Chapter 8.

Example 7.17.

As an initial demonstration, we reconsider the asthma data (Fig 7.16). We first construct a

function, asthma.plot()which will render a ggplot. The lone argument of asthma.plot(),
upper, defines the upper time limit of under consideration in the longitudinal asthma drug

study (Line 3). The upper argument is called in geom_line() (Lines 5-6) to subset, if necessary,
the underlying data. Vital to the animation is the print.ggplot() function (Line 12). Failure

to include this code will create an empty animation.

1 summary.FEV$time <- rep(c(0,11:18), each = 3)
2

3 asthma.plot <- function(upper){
4 a <- ggplot() +
5 geom_line(data = summary.FEV[summary.FEV$time > 10 &
6 summary.FEV$time <= upper,],
7 aes(x = time, y = mean, colour = DRUG)) +
8 ylim(2.6, 4) +
9 xlim(11, 18) +



242 CHAPTER 7. GRID GRAPHICS, INCLUDING GGPLOT2

10 margin_theme() +
11 labs(y = "Forced Expiratory Volume (1 min)",
12 x = "Time (Hrs)")
13 print(a)
14 }

Next, we create a function that runs asthma.plot() for a range of values for upper. The
function consists of a loop run by lapply() (lines 2-3). The final lines of code (lines 8-9) allow
the animation to be saved using the function saveGIF() from the package animation3.

1 asthma.animate <- function() {
2 lapply(12:18, function(i){
3 asthma.plot(i)
4 })
5 }
6

7 # run animation
8 asthma.animate()
9

10 # save frames into one GIF:
11 library(animation)
12 saveGIF(asthma.animate(), interval = 1, movie.name="asthma.gif")

The animation result is shown in Fig 7.27.

3As noted in Ch 6, use of animation::saveGIF requires installation of open source software ImageMagick or

GraphicsMagick (see ?saveGIF).

http://www.imagemagick.org/script/convert.php
http://www.graphicsmagick.org


7.3. GGPLOT2 243

Figure 7.27: Animation demonstration using the asthma dataset.

�

Amazing animations can be created with the package gganimate. These are demonstrated

using several examples.

Example 7.18.

In this example we create a scatterplot animation for the world emissions dataset. In the code

below, steps particularly important to the animation occur on Lines 14-17.

• On Line 14 the plot title is modified as the animation progresses, allowing tracking

of years. The code title = 'Year: {frame_time}' is a gganimate conven-

tion for extracting corresponding time sequence values (in this case the column

world.emission$year) for a projection.
• On line 16 The function gganimate::transition_time() calls frame transitions be-

tween specific point in time in the column year. Usefully, the gganimate sets the transi-

tion time between the states in transition_time() to correspond to the actual time

difference between them.



244 CHAPTER 7. GRID GRAPHICS, INCLUDING GGPLOT2

• On line 17 ease_aes() is used to linearly smooth the animation (in terms of coloration

and the geometric positioning of features) between animation frames. The function is

based on analogous functions from the package tweener.

The package gapminder contains rational color designations (i.e., variations on prime colors

within continents) for 142 countries. Countries without a color designation are colored gray

by scale_colour_manual().

1 library(gganimate)
2 library(gapminder)
3 world.data.sub <- world.emissions |>
4 filter(continent != "Redundant") |>
5 filter(year > 1950)
6

7 g <- ggplot(world.data.sub, aes(x = gdp, y = co2, size = population,
8 colour = country)) +
9 geom_point(alpha = 0.7, show.legend = FALSE) +

10 scale_colour_manual(values = country_colors) +
11 scale_size(range = c(2, 12)) +
12 scale_x_log10() + scale_y_log10() +
13 facet_wrap(~continent) +
14 labs(title = 'Year: {frame_time}', x = 'GDP') +
15 ylab(expression(CO[2])) +
16 transition_time(as.integer(year)) +
17 ease_aes('linear')
18 margin_theme()
19 g

The final result is shown in Fig 7.28.



7.3. GGPLOT2 245

Figure 7.28: Animated scatterplot of CO2 levels over time for countries within continents.

Symbol size scaled by population size.

�

Example 7.19.

Thenext example usesgganimate to animate variation in CO2 levels over timewithin continents,

using boxplots.

1 g <- ggplot(world.data.sub, aes(x = continent, y = co2,
2 group = continent)) +
3 geom_boxplot(aes(fill = continent), show.legend = FALSE) +
4 scale_y_log10() +
5 labs(title = 'Year: {frame_time}', x = '',
6 y = "CO\U2082") +
7 theme(axis.text.x = element_text(angle = 50, hjust = 1,



246 CHAPTER 7. GRID GRAPHICS, INCLUDING GGPLOT2

8 vjust = 0.9, size = 12)) +
9 transition_time(as.integer(year))

10 g

The final result is shown in Fig 7.29.

Figure 7.29: Animated boxplot of CO2 levels over time for countries within continents.

�

Example 7.20.

As a final (rather complex) example, I animate the non-perennial character of Murphy Creek

(Fig 7.26 over time.

To prepare for making the map animation, I first bring in a dataset that documents the pres-

ence/absence of surface water = {0, 1} at 28 locations (i.e., nodes) over 1163 time steps,



7.3. GGPLOT2 247

mur_node_pres_abs (Line 1). The 27 stream sections bounded by the the 28 nodes are de-

fined as stream segments. I select from these time designations, at even intervals, to create a

data subset of 250 time steps (Lines 2-8).

1 data(mur_node_pres_abs)
2 u <- unique(mur_node_pres_abs$Datetime)
3 n <- length(u)
4 frames <- 250
5 times.sub <- u[round(seq(1, n, length = frames),0)]
6

7 w <- which(mur_node_pres_abs$Datetime %in% times.sub)
8 mnpa.sub <- mur_node_pres_abs[w,]

In the code below, the functionsf::st_coordinates() is used to pull spatial coordinates from
theMurphy Creek shapefile underlying themap in Fig 7.26. I also use several functions from the

streamDAG package, including streamDAGs(), which creates a graph-theoretic representation

Murphy Creek (see Aho et al. (2023b)), and thus defines how the stream flows from location to

location. The function streamDAG::STIC.RFimpute() is a wrapper for the random forest al-

gorithm missForest::missForest(), and allows imputation of missing stream presence/ab-

sence data from the dataset mur_node_pres_abs. The function arc.pa.from.nodes() from
streamDAG creates stream segment surface water presence/absence outcomes based on data

from the downstream bounding node of each segment (approach = "dstream"). The func-
tion vector_segments() from streamDAG is used to create the dataframe vs that contains
arcs designations for shapefile coordinates in sf.coords, based on coordinates in the object

node.coords, and the function assign_pa_to_segments() adds surface water presence/ab-
sence designations to vs based on outcomes from the object arc.pa, whew.

1 mur_graph <- streamDAGs("mur_full")
2 # impute missing presence/absence data
3 out <- STIC.RFimpute(mnpa.sub[,-1])
4 mur.pa.sub <- out$ximp
5 # arcs from nodes
6 arc.pa <- arc.pa.from.nodes(mur_graph, mur.pa.sub, approach = "dstream")
7

8 node.coords <- data.frame(mur_coords[,(2:3)])
9 row.names(node.coords) <- mur_coords[,1]

10 sf.coords <- st_coordinates(mur_sf)[,-3]
11

12 vs <- vector_segments(sf.coords, node.coords, realign = TRUE,
13 colnames(arc.pa), arc.symbol = " -> ")
14 datetime <- mnpa.sub$Datetime
15 vsn <- assign_pa_to_segments(vs, frames, arc.pa, datetime = datetime)

Using the data summaries created from the steps above, I can finally create an animated ggplot

map.



248 CHAPTER 7. GRID GRAPHICS, INCLUDING GGPLOT2

1 g <- ggplot(mur_sf) +
2 geom_sf(colour = "gray", lwd = 1.8) +
3 theme_classic() +
4 geom_line(data = vsn, aes(x = x, y = y, group = arc.label,
5 colour = as.factor(Presence)),
6 show.legend = FALSE, lwd = 1.5) +
7 scale_colour_manual(values = c("orange","lightblue")) +
8 geom_point(data = node.coords, aes(x = E, y = N), shape = 21,
9 fill = "white", size = 1.4) +

10 expand_limits(y = c(4788562,4789700)) +
11 annotation_scale() +
12 labs(title = "Date: {frame_time}", x = "", y = "") +
13 annotation_north_arrow(pad_x = unit(10.5, "cm"),
14 pad_y = unit(6.6, "cm")) +
15 transition_time(as.Date(vsn$Time))

The final result, Fig 7.30, shows changing patterns of surface water presence at the Murphy

Creek network during the summer of 2019.

Figure 7.30: Paterns of drying at Murphy Creek, Idaho shown with an animated map. Blue

segments indicate the presence of surface water. Gray segments indicate missing data.



7.3. GGPLOT2 249

�

Exercises

1. Complete the following data management steps on the asbio::world.emissions data.
(a) Eliminate redundant rowsusingcontinent != 'Redundant' anddplyr::filter.
(b) Filter further to subset the data to the years 1955-2019.

(c) Filter further to subset the data to 8 countries of interest (your choice).

(d) Name the dataset emissions.sub.
(e) For the emissions.sub dataset, plot CO2 emissions as a function of year in a scat-

terplot. Save the ggplot as an object (e.g., g).

2. ContinuingQuestion1, overlay a linear regressionmodel ongusinggeom_smooth(method
= "lm").
(a) Extract fitted model components using g + stat_poly_eq(formula = y ~ x,

geom = "debug") from library gginnards. What is the model slope?

(b) Interpret the meaning of the shaded envelope around the line.

(c) Annotate the model onto the graph using: g + stat_poly_eq() from library ggp-

misc.

3. Continuing Question 1, (1) color points in g by country (use transparency to allow

viewing of points laying atop each other), and (2) vary point size by population size.

4. Continuing Question 1, add a label in g identifying US emissions in 2005.

5. Continuing Question 1, use geom_hline() and/or geom_vline() to add reference lines

to g (your choice as to relevant 𝑥 or 𝑦-axis location).

6. Continuing Question 1, alter the the 𝑦-axis limits in g (your choice of limits).

7. Continuing Question 1, create (1) a boxplot, and (2) an interval plot showing CO2 emis-

sions as a function of country. Interpret the meaning of the hinges, centers, and whiskers

of the boxplot and interpret the “errors” in the interval plot.

8. (Advanced) For the dataframe npk in the package datasets, use functions in the the

package ggpubr to overlay results of pairwise comparisons of population means on

interval plots. Specifically:

(a) Use ggbarplot() to make a barplot showing mean Yields and standard errors as a

function of nitrogen N and phosphate P. Vary bar colors using P. Create appropriate
axis and legend labels.

(b) Overlay pairwise comparisons for both N and P levels on the barplot using the

function geom_pwc(). Specify method = t_test since multiple tests for N will not

occur within levels of P.

9. For the asbio::goats dataframe, use ggplot approaches to…
(a) Make plots of the distribution of NO3 using two of the following functions:

geom_area(), geom_freq(), geom_dotplot(), or geom_density().
(b) Create a scatterplot of NO3 as a function of feces, Change symbol sizes to reflect the



250 CHAPTER 7. GRID GRAPHICS, INCLUDING GGPLOT2

values in organic.matter.
(c) Plot NO3 and organic.matter as simultaneous functions of feces by adding a

second y-axis.

10. Using gganimate, and the asbio::asthma dataframe, track subject FEV1 levels over

time with geom_point(). Use faceting to distinguish drug levels.



Chapter 8

Functions

“A computer will do what you tell it to do, but that may be much different from what

you had in mind.”

- JosephWeizenbaum, Important early software developer and AI ethisist

8.1 Introduction to Functions

In computer programming, a function is a set of instructions for performing a specific task, or

providing specific output. Essentially all processes in R are run via functions. For example, the

command: x <- 2, assigns the label x to the numeric value 2. This is actually accomplished,

however, via the function `<-`. That is, one could rewrite the expression x <- 2 as:

`<-`(x, 2)
x

[1] 2

Similarly, summations are evaluated with the underlying function `+`.

`+`(2, 2)

[1] 4

Function call translations, for example, from 2 + 2 to `+`(2, 2), are made silently through

the R-interpreter1, which makes it unnecessary to compile R code into executable files (see Ch

9).

1Chambers (2008) describes function evaluation as a three step process: read→ parse→ evaluate, and refers

to the programmatic mechanisms underlying this process as the R-evaluator.

251



252 CHAPTER 8. FUNCTIONS

8.1.1 function() and Function Base Types

Generally speaking, an R function –at the risk of sounding repetitive– is a function defined by

the function function(), . Arguments inR functionswill be contained in a set of parentheses

in the call to function() itself. The function contents follow, generally delineated by curly

brackets. Thus, we have the form:

function.name <- function(arg.1, arg.2,...., arg.n){function contents}

Recall fromChapter 2 that there are threeR base types specific to functions: closure, special,
and builtin. Functions of base types special and builtin are constrained to the base

package, and include primitive functions built into the R system, and implemented in C. Types

builtin and special can be distinguished as functions that do and do not evaluate their

arguments, respectively (R Core Team, 2024b).

Example 8.1. The code below allows listing of R primitive functions (Chambers, 2008). On

Line 1, a character vector containing base functions named base.objs is generated using the

function objects(). Strings from base.objs are used to test if the functions are primitive by

using is.primitive() as the FUN argument in sapply(). Boolean outcomes from the test

are used to subset base.objs into the object prim.objs.

1 base.objs <- objects("package:base", all = TRUE)
2 prim.objs <- base.objs[sapply(base.objs, function(x) is.primitive(get(x)))]

The summarization is continued in the chunk below. On Line 1, the function split() used to

split data in prim.objs into distinguishing base type categories using typeof(get())within

sapply() (Lines 2 and 3). Numbers of items in these groups are tabulated using sapply()
again (Line 5). There are currently 168 builtin and 42 special primitive functions in R.

1 base.types <- split(prim.objs,
2 sapply(prim.objs,
3 function(x) typeof(get(x))))
4

5 sapply(base.types, length)

builtin special
166 42

Here are the first 20 special primitive functions:

base.types$special[1:20]

[1] "$" "$<-" "&&" ".Internal" "::"
[6] ":::" "@" "@<-" "[" "[["
[11] "[[<-" "[<-" "{" "||" "~"



8.1. INTRODUCTION TO FUNCTIONS 253

[16] "<-" "<<-" "=" "break" "call"

Here are the first 20 builtin primitive functions:

base.types$builtin[1:20]

[1] "-" "!" "!="
[4] "%%" "%*%" "%/%"
[7] "&" "(" "*"
[10] "...elt" "...length" "...names"
[13] ".C" ".cache_class" ".Call"
[16] ".Call.graphics" ".class2" ".External"
[19] ".External.graphics" ".External2"

Clearly, primitive functions of base type special and builtin include conventional operators
(with bounding accent grave characters). For example, `$` has base type special,

typeof(`$`)

[1] "special"

and `+` has base type builtin.

typeof(`+`)

[1] "builtin"

�

Primitive functions generally make calls to the function .Primitive(), which identifies an

underlying C routine used for evaluating the outer function. For example, we see that `+`, as
codified in R, calls a C routine identified with "+".

`+`

function (e1, e2) .Primitive("+")

8.1.2 Base Type closure

Primitive functions (those of types special and builtin) cannot be created by users outside

of the R development core team. Thus, base type closure represents the only kind of function
R-users can actually create and easily modify. The name “closure” refers to the programming

style underlying these functions, with each assigned to a particular environment with local

internal objects (see Section 5.4 in Chambers (2008)). Consider the simple homemade function

square.me().



254 CHAPTER 8. FUNCTIONS

square.me <- function(x){
x^2

}

square.me(4)

[1] 16

typeof(square.me)

[1] "closure"

Functions of base type closurewill have three components.

• The formal arguments constitute the arguments that control the function. The formals

can be accessed via the function formals(). For instance,

formals(square.me)

$x

The formals of a function will have a pairlist base type.

typeof(formals(square.me))

[1] "pairlist"

• The body constitutes the actual function code. The function body() returns the body of
a function as an unevaluated expression.

body(square.me)

{
x^2

}

• The environment is a base type that defines the data structure the function requires

for its computations. An environment is required for all R functions, whether they are

builtin, special, or closure. When an object assignment (including the naming of a

function) occurs at the “top level” in an R session (e.g., outside of the body of a function),

its environment will be the global environment. The global environment is maintained

throughout a session and can be saved across sessions using, for instance, the function

save.image() (Section 2.7.2). Environments of functions can be checked, created, or

changed using the function environment().

The environment of square.me() is the global environment.



8.1. INTRODUCTION TO FUNCTIONS 255

environment(square.me)

<environment: R_GlobalEnv>

As is the the environment of the session itself.

environment()

<environment: R_GlobalEnv>

In contrast, the environment for the function mean() is the base package.

environment(mean)

<environment: namespace:base>

Functions in base, including mean(), are accessible, because the base package namespace is

loaded automatically (along with most of the R distribution packages) upon opening R.

isNamespaceLoaded("base")

[1] TRUE

Example 8.2.

As a biological example, we will create a function for calculating predicted sizes of biological

populations under geometric growth. The geometric growth equation (Eq. (8.1)) is often used

to represent population growth for a species with unlimited resources and non-overlapping

generations:

𝑓(𝑡) = 𝑁0𝜆𝑡, (8.1)

where: 𝑁0 = initial number of individuals, 𝜆 = the geometric rate of increase, and 𝑡 = the

number of time intervals or generations. We have:

Geo.growth <- function(N.0, lambda, t){
Nt <- N.0 * lambda^t
Nt

}

Note that the function has three arguments: N.0, lambda, and t.

A function-user must specify each of these. The first line of code in the function body solves

𝑁0𝜆𝑡. Importantly, the second (last) line of body code specifies the object we actually want

returned, Nt. Without a “return value” nothing will be returned by the function. If one requires

multiple return objects, then one can place them in single suitable container like a list.

To increase clarity, one should place the first curly bracket on same line as the arguments, and

place last curly bracket on its own line. Readability can also be improved with the use of tabs



256 CHAPTER 8. FUNCTIONS

and spaces. Note that I have indented lines containing related operations. This distinguishes

those lines from the first (argument) line and the end (return) line. Note also that spaces are

placed after commas, and before and after operators, including the assignment operator. This

is also good general practice for code writing2.

Below we run the function for different values of N.0, lambda, and t.

Geo.growth(N.0 = 100, lambda = 1.2, t = 20)

[1] 3833.8

Geo.growth(N.0 = 30, lambda = 0.2, t = 3)

[1] 0.24

Geo.growth(N.0 = 30, lambda = 1, t = 3)

[1] 30

�

8.2 Global vs. Local Variables

As noted in Ch 1, objects in R are lexically scoped, allowing distinctions of global and local

variables. Global variables are objects that exist within the global environment and conse-

quently are broadly accessible, whereas local variables are only accessible in particular settings.

Objects defined within a function, including arguments, are (generally) local to that function,

and thus are accessible only within the body of the function.

We see that the object N.t, which was defined in the last line of Geo.growth(), is local to that
function, since it cannot be detected in the global environment3.

Nt

Error in eval(expr, envir, enclos): object 'Nt' not found

Global variables can be assigned in functions using the super-assignment operator, <<-, al-
though I have found the need for this operator to be rare (but see Section 11.2.1).

Geo.growth <- function(N.0, lambda,t){
Nt <<- N.0 * lambda^t
Nt

}

2A good R style guide can be found at: (https://google.github.io/styleguide/Rguide.html).
3Commonly reported errors for functions using tidyverse code are given at the A future for R website.

https://google.github.io/styleguide/Rguide.html
https://cran.r-project.org/web/packages/future/vignettes/future-4-issues.html


8.2. GLOBAL VS. LOCAL VARIABLES 257

g <- Geo.growth(N.0 = 30, lambda = 1, t = 3)
Nt

[1] 30

Example 8.3.

The apply family of functions for data management, including apply(), tapply(), sapply()
and lapply() (Section 4.1.1) allow inclusion of user-defined functions (see Example 8.1

from earlier in this chapter). The function stan() below centers and scales (standardizes)

outcomes. That is, each element in the dataset is subtracted from its mean, and divided by

its standard deviation). We can call stan()within apply(), using the latter function’s third
(FUN) argument.

stan <- function(x){
(x - mean(x))/sd(x)

}

out <- apply(Loblolly[,1:2], 2, stan)

As a consequence of the transformation, columns in the object outwill the same mean (zero),

and the same variance (one)

apply(out, 2, mean) # zero with rounding error

height age
1.6687e-16 1.8508e-17

apply(out, 2, var)

height age
1 1

�

Example 8.4.

Below is a function called stats() that will simultaneously calculate a large number of distinct

summary statistics.

1 stats <- function(x, digits = 5){
2 require(asbio)
3 ds <- data.frame(statistics = round(c(length(x), min(x), max(x),
4 mean(x), median(x), sd(x), var(x),
5 IQR(x), sd(x)/sqrt(length(x)),
6 kurt(x), skew(x)), digits))
7 rownames(ds) <- c("n", "min", "max", "mean", "median", "sd",



258 CHAPTER 8. FUNCTIONS

8 "var", "IQR", "SE", "kurtosis", "skew")
9 ds

10 }

Note that the function contains two arguments (Line one): a call to a numeric data vector, x,
and the number of significant digits to be used in printing the output. Because digits has been
given a default value (digits = 5), only the first argument needs to be specified by the user. The

first line of code in the body of the function (Line 2) indicates that package asbio is required
by the function (the package contains the functions asbio::skew() and asbio::kurt() for
calculating the data skew and kurtosis, respectively. In Lines 3-8 a dataframe is created

called ds. The dataframe has one column called statistics, that will contain numeric entries

for eleven statistical summaries of x. The summaries are rounded to the number of digits

specified in digits. Lines 7-8 define the row names of ds. These are the names of the statistics

calculated by the function. The last line of code in the body (Line 9) prints ds.

We can readily apply stats() directly to a single numeric column.

stats(Loblolly[,1])

statistics
n 84.00000
min 3.46000
max 64.10000
mean 32.36440
median 34.00000
sd 20.67360
var 427.39793
IQR 40.89500
SE 2.25568
kurtosis -1.47347
skew -0.06434

Or apply the function to multiple columns, for instance, by calling stats()within apply().
For instance:

apply(Loblolly[,c(1:2)],2,stats)

$height
statistics

n 84.00000
min 3.46000
max 64.10000
mean 32.36440
median 34.00000
sd 20.67360
var 427.39793



8.3. USEFUL FUNCTIONS FORWRITING FUNCTIONS 259

IQR 40.89500
SE 2.25568
kurtosis -1.47347
skew -0.06434

$age
statistics

n 84.00000
min 3.00000
max 25.00000
mean 13.00000
median 12.50000
sd 7.89998
var 62.40964
IQR 15.00000
SE 0.86196
kurtosis -1.37375
skew 0.18925

�

8.3 Useful Functions for Writing Functions

8.3.1 switch()

Auseful tool for functionwriting is switch(). It evaluates and switches amonguser-designated

alternatives which can be defined in a function argument.

Example 8.5.

The function below switches between five different estimators of location (i.e., estimators of a

typical or central value from a sample). These are the sample mean, a trimmed mean (using

10% trimming), the geometric mean, the median, and Huber’s𝑀-estimator. See Chapter 4 in

Aho (2014) for details concerning these estimators.

1 location <- function(x, estimator){
2 require(asbio)
3 switch(estimator,
4 mean = mean(x), # arithmetic mean
5 trim = mean(x, trim = 0.1), # trimmed mean
6 geo = exp(mean(log(x))), # geometric mean (use for means of rates)
7 med = median(x), # median
8 huber = huber.mu(x), # Huber M-estimator
9 stop("Estimator not included"))

10 }



260 CHAPTER 8. FUNCTIONS

location(Loblolly[,2], "geo")

[1] 10.198

location(Loblolly[,2], "trim")

[1] 12.765

Important to the function above is the pairing of the estimator argument in the overall

function (Line 1) and a call to estimator in the first argument of switch (Line 3). As a final
component of switchwe address the contingency that a location estimator is specified that

is not codified in the function. This is done using the stop() function with an appropriate

message (Line 9).

�

8.3.2 match.arg()

It is possible to specify partial matching for argument designations using the function

match.arg().

Example 8.6.

For instance, what if we knew (or only wanted to specify) the first couple letters in the location

estimator options for the previous function, location()? We could specify a step like the

following.

indices <- c("mean", "trim", "geo", "median", "huber")
method <- match.arg(estimator, indices)

This is incorporated into location() on Lines 3-4 below. Note also the change in the first

argument ofswitch fromestimator (Line 5), whichmayhave incomplete spelling of a location

estimator name, to method, which will contain the complete index names from index.

1 location <- function(x, estimator){
2 require(asbio)
3 indices <- c("mean", "trim", "geo", "median", "huber")
4 method <- match.arg(estimator, indices)
5 switch(method,
6 mean = mean(x), # arithmetic mean
7 trim = mean(x, trim = 0.1), # trimmed mean
8 geo = exp(mean(log(x))), # geometric mean (use for means of rates)
9 med = median(x), # median

10 huber = huber.mu(x), # Huber M-estimator
11 stop("Estimator not included"))
12 }



8.3. USEFUL FUNCTIONS FORWRITING FUNCTIONS 261

Now we could do something like:

location(Loblolly[,2],"t")

[1] 12.765

location(Loblolly[,2],"h")

[1] 13

�

8.3.3 ...

The triple dot (...) operator4 allows customization of existing functions within another

function. Thus, it is useful for writing wrapper functions (functions whose chief purpose is

customization of an embedded function).

Example 8.7.

Imagine you wished to create a wrapper for the function plot() that allowed simultane-

ous computation and customized plotting of a simple linear regression model. We could do

something like:

1 plot.reg <- function(x, y, ...){
2 reg <- lm(y ~ x)
3 plot(x, y, ...)
4 abline(reg)
5 }

The first two formal arguments x and y on line Line 1, establish plotting coordinates of points,

and define the outcomes for the explanatory and response variables, respectively. The third

argument is the triple dot operator (Line 1). In the first line in the body of the function (Line

2) we create a general linear regression model using the function lm(). Line 3 creates a

plot and, importantly, calls the triple dot operator from the arguments in plot.reg(). This
allows specification of any possible plot() arguments, as arguments within plot.reg(). For
instance, in the usage of plot.reg() below, I specify the x and y axis labels, a plotting character
type, and symbols colors (Fig 8.1). The last line of code (Line 4) plots the regression line.

with(Loblolly, plot.reg(age, height, pch = 19, col = as.numeric(Seed),
ylab = "Height (ft)", xlab = "Age (yrs)"))

4This operator is not the same as the C-internal ... base type (Section 2.3.4).



262 CHAPTER 8. FUNCTIONS

5 10 15 20 25

10
20

30
40

50
60

Age (yrs)

H
ei

gh
t (

ft)

Figure 8.1: Representation of loblolly pine tree height as a function of age. Regression fit

overlaid. Seed types are distinguished with colors.

�

8.3.4 invisible()

The invisible() function can be useful when one wishes to have results computed and saved

but not necessarily printed.

Example 8.8.

Assume that wewant to retain plot.reg() as a plotting function, but wish to have potential ac-

cess to actual statistical summaries from the regression model. We could rewrite plot.reg()
as:

1 plot.reg <- function(x, y, plot = TRUE, ...){
2 reg <- lm(y ~ x)
3 if(plot){ plot(x, y, ...)
4 abline(coef(reg))}
5 invisible(summary(reg))
6 }



8.4. LOOPS 263

Note that I have added an argument, plot (Line 1), to control whether a plot is created via

if(plot) (Line 3). By suppressing plotting I get no graphics (or text) output:

with(Loblolly, plot.reg(age, height, plot = FALSE))

However, if I assign aname to the function’s output, andprint the assigned object, I get summary

output for the regression model:

lob.model <- with(Loblolly, plot.reg(age, height, plot = FALSE))
lob.model

Call:
lm(formula = y ~ x)

Residuals:
Min 1Q Median 3Q Max

-7.021 -2.167 -0.439 2.054 6.855

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.3124 0.6218 -2.11 0.038 *
x 2.5905 0.0409 63.27 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.95 on 82 degrees of freedom
Multiple R-squared: 0.98, Adjusted R-squared: 0.98
F-statistic: 4e+03 on 1 and 82 DF, p-value: <2e-16

�

8.4 Loops

Loop functions exist in some form in virtually all programming languages. A “for loop” in R is

initiated using the function for(). The for construct requires a specification of three entities

• An index variable, e.g., i,
• The statement in
• A sequence that the index variable refers to as the loop commences.

Code defining the loop follows, generally delineated by curly brackets. In parallel to function

writing it is good style to place the first curly bracket on the same line as the call to for, and to

place the last curly bracket on its own line. Thus, we have the basic for loop format:



264 CHAPTER 8. FUNCTIONS

for(i in seq){
loop contents

}

In the loop, values of index are used directly or indirectly to specify the 𝑖th element of some-

thing (e.g., matrix column, vector entry, etc.) as the for loop sequence commences. The

replacement/definition process takes place in the “loop contents.” For instance,

for(i in 1:3){
print(i)

}

[1] 1
[1] 2
[1] 3

8.4.1 Extending Scalar Arguments

One application for a loop is to make functions with scalar input arguments amenable to

multi-element vector, matrix or dataframe inputs.

Example 8.9.

A library I created, plant.ecol, lives only on Github. We can access it with the code:

library(devtools)
install_github("moondog1969/plant.ecol")
library(plant.ecol)

The package devtools facilities building R packages from source code, and contains functions,

e.g., install_github(), for downloading packages from unconventional repositories5. The

function plant.ecol::radiation.heatl() calculates annual incident solar radiation (MJ

cm−2 yr−1) and heatload, a northern hemisphere thermal index that acknowledges that highest

levels of heat loading occur on southwest facing slopes north of the equator. The function

requires three arguments for some location of interest: slope, aspect, and north latitude, all

measured in degrees.

formals(radiation.heatl)

$slope

$aspect

5Functions from the tidyverse package usethiswill be useful for setting up passwords and tokens necessary

for downloading from some repositories, including Github.



8.4. LOOPS 265

$lat

The function is designed to accommodate scalar inputs (single values for slope, aspect and lat).

We will create a for loop to allow calculation of multiple values from a matrix. For instance,

here are potential values for five sites.

envdata <- data.frame(slope = c(10, 12, 15, 20, 3),
aspect = c(148, 110, 0, 30, 130),
latitude = c(40, 50, 20, 25, 45))

We first create storage containers for the radiation and heatload results.

rad.out <- 1:nrow(envdata) -> hl.out

Here is a potential loop for our problem.

1 for(i in 1:length(rad.out)){
2 temp <- with(envdata, radiation.heatl(slope[i],
3 aspect[i],
4 latitude[i]))
5 rad.out[i] <- temp$radiation
6 hl.out[i] <- temp$heat.load
7 }

The function was forced to loop around on itself letting i = 1 during the first loop, i = 2,
during the second loop, up to i = 5 on the final loop. Here are the results.

cbind(rad.out, hl.out)

rad.out hl.out
[1,] 0.99766 0.94551
[2,] 0.85008 0.77345
[3,] 0.93030 0.96684
[4,] 0.85604 0.83957
[5,] 0.91852 0.90011

�

8.4.2 Building on a Previous Result

Another application of a loop is to iteratively build on the results of the previous step(s) in the

loop.

Example 8.10.

Consider the following function that counts the number of even entries in a vector of integers.



266 CHAPTER 8. FUNCTIONS

1 evencount <- function(x){
2 res <- 0
3 for(i in 1 : length(x)){
4 if(x[i] %% 2 == 0) res <- res + 1
5 }
6 res
7 }

Recall from Ch 2 that %% is the modulus operator in R. That is, it finds the remainder in division.

By definition the remainder of any even integer divided by two will be zero. At each loop

iteration the function adds one to the numeric object res if the current integer in the loop is

even (if it has remainder zero if divided by two).

evencount(1:3)

[1] 1

evencount(c(1,2,3,4,10))

[1] 3

�

8.4.3 Summarizing Categorical Variables

A third loop application is the summarization of data with respect to levels in a categorical

variable.

Example 8.11.

As an example we will create statistical summaries for height and age for each Seed type in
the Loblolly dataset, using the stats function I created earlier. I first create an empty list to

hold my result:

result <- list()

1 for(i in levels(Loblolly$Seed)){
2 temp <- Loblolly[,1:2][Loblolly$Seed ==i,]
3 result[[i]] <- as.data.frame(apply(temp, 2, stats))
4 names(result[[i]]) <- c("Age","Height")
5 }

Loblolly$Seed. This is specified with: for(i in levels(Loblolly$Seed)). Note that on
Line 2, the first two columns of the Loblolly dataset are subset by levels in Seed. Here are
the results for seed type 305.



8.4. LOOPS 267

result$'305' # "name" of one of the 14 Loblolly seed types

Age Height
n 6.0000 6.00000
min 4.7900 3.00000
max 64.1000 25.00000
mean 35.1150 13.00000
median 37.3050 12.50000
sd 23.9271 8.60233
var 572.5056 74.00000
IQR 36.8850 12.50000
SE 9.7682 3.51188
kurtosis -1.8479 -1.47809
skew -0.1613 0.25449

�

8.4.4 LoopingWithout for()

Looping in R is also possible using other general styles of Algol-like6 languages (e.g., C, C++,

Pascal, and Fortran). This is accomplished with the constructs while(), repeat, and break.

Example 8.12.

Consider an example in which 2 is added to a base number until the updated number becomes

greater than or equal to 10: We have:

i <- 1
while (i < 10) i <- i + 2
i

[1] 11

Or, to explicitly track the loop, we could use:

i <- 1; out <- i

while(TRUE){
j <- i + 2
out <- paste(out, j, sep = ",")
i <- j
if (i > 9) break

}

6Algol (Algorithmic language) computer languages arose in the late 1950s from the language ALGOL 68.

Important examples include Pascal, C, and Fortran.



268 CHAPTER 8. FUNCTIONS

out

[1] "1,3,5,7,9,11"

Or, more simply

i <- 1; out <- i

repeat{
j <- i + 2
out <- paste(out, j, sep = ",")
i <- j
if (i > 9) break

}

out

[1] "1,3,5,7,9,11"

Here i took on values 1, 3, 5, 7, 9, and 11 as the loop commenced (this information is accumu-

lated in the object out). When i equaled 11, the condition for continuation of the loop failed

and the loop was halted.

CAUTION!

Some care should be exercised with while() and repeat since infinite loops will result

if impossible breaks are specified.

�

8.4.5 Final Looping Considerations

Despite their potential usefulness, loops can run slowly in R because it is an interpreted

language (see Ch 9). Loops can often be avoided altogether. For example, one could rewrite

the earlier evencount() function as:

evencounti <- function(x){
out <- ifelse(x %% 2 == 0, 1, 0)
sum(out)

}
# even outcomes from a random Poisson process
evencounti(rpois(1000, 2))

[1] 503

This increases efficiency, as documented by the function system.time():



8.5. FUNCTIONAL PROGRAMMING 269

system.time(evencount(1:1000000))

user system elapsed
0.17 0.00 0.17

system.time(evencounti(1:1000000))

user system elapsed
0.05 0.00 0.04

Loops can often be run more efficiently using the apply() family of functions (see animation

examples using lapply() in Chs 6 and 7).

If loops are necessary, speed is an issue, and use of alternative approaches (e.g., lapply()) is
awkward or suboptimal, one can call a compiled C, C++, or Fortran script from within R to run

the loop. This topic is addressed further in Ch. 9.

8.5 Functional Programming

In functional programming one uses a declarative programming style that applies “pure”

(often argument-less) functions7. Binary or infix operations require exactly two operands, and

provide excellent examples of functional programming. The primitive functions `+`, `-`, `*`
(Section 8.1) are binary operator functions. When more than two operands are supplied, the

functions still work in pairs. Thus,

`+`(1,`+`(2,3))

[1] 6

is equivalent to

1 + 2 + 3

[1] 6

One can create personalized operator functions using the syntax: `% operator name %` or
"% operator name %".

Example 8.13.

It might be useful to have an operator-style function for computing cumulative sums of indi-

vidual numbers (although cumsum() does this already for numerical or complex objects). We

will call our new operator %+%.

7Famous functional programming languages include Lisp, Scheme, F#, and Haskell.



270 CHAPTER 8. FUNCTIONS

`%+%` <- function(a,b){c(a, a + cumsum(b))}

2.1 %+% 7.4

[1] 2.1 9.5

To make the operator work for more than two numbers, the second operand must be a multi-

element numeric object.

2.1 %+% c(2.6, 1.5)

[1] 2.1 4.7 6.2

�

Useful R functions for functional programming include Reduce(), Filter(), Find(), Map(),
Negate(), and Position().

Example 8.14.

As a more applied example, recall from Section 4.2.8 that the %in% operator can be used to

indicate if there is a match (or not) for its left operand. This does not clarify, however, how one

might specify not %in%. The operations !%in% and %!in%, for example, do not work. The code

below creates a %!in% operator using the function Negate().

`%!in%` <- Negate(`%in%`)

We apply `%!in%` below to subset bacterial phylum names.

big <- c("Abawacabacteria", "Absconditabacteria", "Acidobacteriota",
"Actinomycetota", "Aminicenantes", "Atribacterota",
"Aquificota", "Azambacteria")

small <- c("Acidobacteriota", "Actinomycetota")

w <- which(big %!in% small)
big[w]

[1] "Abawacabacteria" "Absconditabacteria" "Aminicenantes"
[4] "Atribacterota" "Aquificota" "Azambacteria"

�

8.6 Functions with Classes and Methods

R object classes can have particularmethods for plotting, printing, and summarization. Fol-

lowing a relatively simple series of steps, these methods can be implemented using generic



8.6. FUNCTIONS WITH CLASSES AND METHODS 271

function names, i.e., plot(), print(), summary(). For example, the function lm() creates

objects of class lm.

model <- lm(height ~ age, data = Loblolly)
class(model)

[1] "lm"

There are specific summary, print, and plot methods for an object of class lm. Code for

these methods can be viewed by typing stats:::summary.lm, stats:::print.lm, and
stats:::plot.lm, respectively. The stats:::print.lmwill be called automatically to print

an object of class lm. For instance,

print(model)

Call:
lm(formula = height ~ age, data = Loblolly)

Coefficients:
(Intercept) age

-1.31 2.59

or, more simply,

model

Call:
lm(formula = height ~ age, data = Loblolly)

Coefficients:
(Intercept) age

-1.31 2.59

Here are 20 out of the more than 500 functions on my workstation that can be called with

print, depending on the class of the object that is being printed.

methods(print)[1:20]

[1] "print,ANY-method" "print,diagonalMatrix-method"
[3] "print,modelMatrix-method" "print,sparseMatrix-method"
[5] "print.aareg" "print.abbrev"
[7] "print.abuocc" "print.acf"
[9] "print.activeConcordance" "print.addtest"
[11] "print.AES" "print.agnes"
[13] "print.all_vars" "print.allPerms"
[15] "print.anosim" "print.anova"
[17] "print.Anova" "print.anova.gam"



272 CHAPTER 8. FUNCTIONS

[19] "print.anova.lme" "print.anova.loglm"

Importantly, we are not limited to the pre-existing object classes inR (e.g., lm, numeric, factor,
etc.). Instead, we can create user-defined classes for function output. These classes can also

have methods for plotting, printing, and summarization.

8.6.1 S3 and S4

R has two-main approaches for developing OOP classes: S3, and S48 9 Wickham (2019) notes:

“S3 allows your functions to return rich results with user-friendly display and

programmer-friendly internals”

and

“S4 is a rigorous system that forces you to think carefully about program design. It’s

particularly well-suited for building large systems that evolve over time and will

receive contributions from many programmers.”

S3 methods tend to be easier to develop than S4 methods, and this approach is recommended

for most applications in R. The amenability of S4 for interfacing with multiple programmers

explainswhy this approach is required for contribution to thehighly collaborativeBioconductor

project. S4 OOP classes and their associated methods are implemented via the R-distribution

packagemethods. I focus on S3 methods here, but briefly consider S4 methods.

8.6.1.1 S3

S3 classes are created using the function class().

ISU <- list(name = "Idaho State University", n.students = 12000,
founded = 1905)

class(ISU) <- "univ"
ISU

$name
[1] "Idaho State University"

$n.students
[1] 12000

$founded
[1] 1905

8S1 andS2OOPclasses donot exist. S3 and S4werenamedaccording to the versions of S that they accompanied.

S versions 1 and 2 didn’t have an OOP framework.
9Wickham (2019) discusses two other less widely-used approaches: RC and R6. RC, or Reference Classes,

are generated using the base function setRefClass(). Approaches for generating R6 objects and classes are

provided by the R6 package, and are more similar to RC than to S3 and S4.



8.6. FUNCTIONS WITH CLASSES AND METHODS 273

attr(,"class")
[1] "univ"

Note that the object ISU has the class attribute "univ". The sloop package contains functions
to help distinguish OOP class frameworks. The function sloop::otype() can be used to

determine if an object is S3, S4, RC, or R6.

library(sloop)
otype(ISU)

[1] "S3"

The object ISU is S3.

An S3 (or S4 object) is fairly useless without associatedmethods. Here is a simple print method

for an object of class univ, i.e., a list with components: name, founded, and n.students.

print.univ <- function(x){
cat(x$name, " was founded in ", x$founded, ",\nand has an enrollment of ",

x$n.students, " students.", sep = "")
}

This dramatically changes the way the object ISU is printed.

ISU

Idaho State University was founded in 1905,
and has an enrollment of 12000 students.

Functions useful in creating print methods include cat() (used above) and structure(). The
function cat() concatenates text into a single character vector, and prints the results. As a

simple example, in the code below we bind the string “iteration = '', to a random integer

generated from a Poisson distribution rpois(1, 10), and apply a double line break "\n\n".

cat("iteration = ", rpois(1, 10), "\n\n", sep = "")

iteration = 6

The function structure() allows one to assign an attribute set to data.

structure(.Data = 1:6, dim = 2:3)

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

structure(.Data = 1:6, names = LETTERS[1:6])

A B C D E F



274 CHAPTER 8. FUNCTIONS

1 2 3 4 5 6

We can identify methods specific to some class using the function sloop::ftype.

ftype(print.univ)

[1] "S3" "method"

Example 8.15.

Here is a more complex example in which an output object from a function has an S3 class. The

function asbio::pairw.anova is used for adjusting 𝑝-values resulting frommultiple pairwise

comparisons following an omnibus ANOVA (ANalysis Of VAriance). Objects generated by the

function have class pairw and are S3.

eggs <- c(11,17,16,14,15,12,10,15,19,11,23,20,18,17,27,33,22,26,28)
trt <- factor(rep(1:4, c(5,5,4,5)))

tukey <- pairw.anova(y = eggs, x = trt)
class(tukey)

[1] "pairw"

otype(tukey)

[1] "S3"

Objects of class pairw have both print and plot methods.

ftype(print.pairw) # print method for class pairw

[1] "S3" "method"

ftype(plot.pairw) # plot method for class pairw

[1] "S3" "method"

The correct S3 method for a generic function call, e.g., print(), is identified using a pro-

cess called method dispatch. Method dispatch steps in R are identifiable using the function

sloop::s3_dispatch. Here is the process of identifying the correct printing method for an

object of class pairw.

s3_dispatch(print(tukey))

=> print.pairw
* print.default

Here is the actual print method’s output:



8.6. FUNCTIONS WITH CLASSES AND METHODS 275

tukey

95% Tukey-Kramer confidence intervals

Diff Lower Upper Decision Adj. p-value
mu1-mu2 1.2 -4.71976 7.11976 FTR H0 0.935298
mu1-mu3 -4.9 -11.17885 1.37885 FTR H0 0.15489
mu2-mu3 -6.1 -12.37885 0.17885 FTR H0 0.058287
mu1-mu4 -12.6 -18.51976 -6.68024 Reject H0 0.000101
mu2-mu4 -13.8 -19.71976 -7.88024 Reject H0 3.7e-05
mu3-mu4 -7.7 -13.97885 -1.42115 Reject H0 0.014218

This same method is used for other objects from asbiowhose output has class pairw. These
include objects from functions providing pairwise comparisons of factor levels following: an

omnibus Friedman’s test10, pairw.fried(), and an omnibusWelch’s test11, pairw.oneway().

welch <- pairw.oneway(y = eggs, x = trt)
welch

95% Welch adjusted confidence intervals

Diff Lower Upper Decision Adj. p-value
mu1-mu2 1.2 -3.39503 5.79503 FTR H0 0.55425
mu1-mu3 -4.9 -8.991 -0.809 FTR H0 0.068803
mu2-mu3 -6.1 -11.06986 -1.13014 FTR H0 0.068803
mu1-mu4 -12.6 -17.53547 -7.66453 Reject H0 0.0032699
mu2-mu4 -13.8 -19.36022 -8.23978 Reject H0 0.0027003
mu3-mu4 -7.7 -12.95069 -2.44931 Reject H0 0.04229

�

Viewing of code for S3 methods functions may require use of the double colon operator, e.g.,

asbio::plotpairw, or the triple colon operator, :::.

Example 8.16.

In this extended exercise we will fashion an advanced function, with an S3 class and create

associated methods, using a number of approaches discussed so far in this chapter.

In ecological studies, 𝛼-diversity measures the level of species evenness and richness within

individual plots in a dataset. The most widely used alpha diversity indices are Simpson’s index,

𝐷1, and the Shannon-Weiner index,𝐻′.

10Friedman’s test is a non-parametric alternative to an ANOVA with a blocking variable.
11Welch’s test, implementedusingoneway.test, allowsheteroscedasticity among factor levelswhen comparing

factor level means.



276 CHAPTER 8. FUNCTIONS

𝐷1 = 1 −
𝑆
∑
𝑖=1

𝑝2𝑖 (8.2)

𝐻′ = −
𝑆
∑
𝑖=1

𝑝𝑖 ln 𝑝𝑖 (8.3)

where 𝑆 denotes the number of species, and 𝑝𝑖 is the proportional abundance of the 𝑖th species,
𝑖 = 1, 2,… , 𝑆.

Here are features I want my advanced 𝛼-diversity function to have:

• Arguments specifying (1) a dataset for analysis, and (2) the type of 𝛼-diversity we want
calculated. So, two arguments.

• A function capable of handing summaries of communities for a single site, whose data

will be a single numeric vector, and dataframes describing abundances of taxa atmultiple

sites.

• Assignment of correct names of sites (if any) to results.

• Partial matching of diversity method names using arg.match.
• An S3 class.

• Invisible components, appropriate for class print and plot methods.

1 alpha.div <- function(x, method = "simpson"){
2 if(is.data.frame(x)) rn <- rownames(x) else {
3 if(ncol(as.matrix(x) == 1)) rn = noquote("") else
4 rn = 1:nrow(as.matrix(x))
5 }
6

7 indices <- c("simpson", "shannon"); method <- match.arg(method, indices)
8

9 x <- as.matrix(x)
10

11 prop <- function(x){
12 if(ncol(x) == 1) out <- x/sum(x)
13 else
14 out <- apply(x, 1, function(x) x/sum(x))
15 out
16 }
17

18 p.i <- prop(x)
19

20 simp <- function(x, p.i){
21 if(ncol(x) == 1) D <- 1 - sum(p.i^2)
22 else
23 D <- 1 - apply(p.i^2, 2, sum)



8.6. FUNCTIONS WITH CLASSES AND METHODS 277

24 D
25 }
26

27 shan <- function(x, p.i){
28 if(ncol(x) == 1) H <- -sum(p.i[p.i > 0] * log(p.i[p.i > 0]))
29 else
30 H <- apply(p.i, 2, function(x)-sum(x[x != 0] * log(x[x != 0])))
31 H
32 }
33

34 div <- switch(method,
35 simpson = simp(x, p.i),
36 shannon = shan(x, p.i))
37

38 out <- list(p.i = p.i, rn = rn, method = method, div = div)
39 class(out) <- "a_div"; invisible(out)
40 }

Below is a breakdown of important components of the function alpha.div() above.

• In the arguments (Line 1), x is assumed to be either 1) a dataframe of taxa abundances at

sites, with sites in rows (identified by row names) and taxa in columns, or 2) a numeric

vector containing abundances of distinct taxa at a single site.

• In the first lines of code in the function body (Lines 2-4), the function attempts to obtain

site names from x. If x is a dataframe, this is done using rn <- rownames(x). If x is
a vector describing a single site, distinguishing site names is probably not important,

hence the code rn = noquote("").
• The alpha.div() function contains three sub-functions: prop() (Lines 11-16), which
allows computation of 𝑝𝑖, and is used to create the object p.i, simp() (Lines 20-25),
which calculates Simpson’s diversities, and shan() (Lines 27-32), which calculates

Shannon-Weiner diversities. The latter function contains exception handling steps for

taxa abundances of zero which will be undefined in Eq (8.3). For instance, p.i[p.i >
0] on Line 28, and x[x != 0] on Line 30.

• Partial matching of diversity method names (i.e., "simpson" and "shannon") is facili-
tated through the function match.arg().

• Switching of diversity methods is done via switch() (Lines 34-36).
• The function output is a list named out, which contain four objects: the proportional

abundances of taxa, the rownames of x (i.e, the site names), the diversity method used,

and the actual calculated diversities (Line 38).

• In the last line of body code, out is assigned to the user-defined class a_div and made

invisible.

Here we apply the function to the dataset varespec from the library vegan.



278 CHAPTER 8. FUNCTIONS

library(vegan)
data(varespec)
v.div <- alpha.div(varespec)
class(v.div)

[1] "a_div"

otype(v.div)

[1] "S3"

Printing the output object v.div results in a rather messy rendering of a list, prompting the

creation of an a_div print method. Our print.a_div() functionwill succinctly and effectively

summarize results from alpha.divwhile allowing access to additional (invisible) information.

Our function for printing can be relatively simple.

1 print.a_div <- function(x, digits = 5){
2 method <- ifelse(x$method == "simpson", "Simpson",
3 "Shannon-Weiner")
4 cat(method, " diversity:", "\n", sep = "")
5 rq <- structure(x$div, names = x$rn)
6 print(rq, digits = digits)
7 invisible(x)
8 }

• The required argument, x in print.a_div (Line 1), will be an object of class a_div,
created by the function alpha.div(), e.g., the object v.div. Recall that this is a list
containing multiple objects.

• The object x$method is used create a tidy text summary of the diversity method used

(Lines 2-3). This string is combined with a another string and printed with a line break

in: cat(method, " diversity:", "\n", sep = "")}‘ (Line 4).
• The actual diversities are printed with the help of the function structure() on Lines

5-6.

print(v.div)

Simpson diversity:
18 15 24 27 23 19 22 16 28

0.82171 0.76276 0.78101 0.74414 0.84108 0.81819 0.80310 0.82477 0.55996
13 14 20 25 7 5 6 3 4

0.81828 0.82994 0.84615 0.83991 0.70115 0.56149 0.73888 0.64181 0.78261
2 9 12 10 11 21

0.55011 0.49614 0.67568 0.50261 0.80463 0.85896

Output from alpha.div() can also be used for plotting. Here is a plot function for objects of

class a_div.



8.6. FUNCTIONS WITH CLASSES AND METHODS 279

1 plot.a_div <- function(x, plot.RAC = FALSE){
2 require(ggplot2)
3 margin_theme <- function(){
4 theme(axis.title.x = element_text(vjust=-5),
5 axis.title.y = element_text(vjust=5),
6 plot.margin = margin(t = 7.5, r = 7.5,
7 b = 20, l = 15))
8 }
9

10 ptype1 <- function(){
11 spi <- apply(x$p.i, 2, function(x)sort(x, decreasing = TRUE))
12 sspi <- data.frame(p.i = stack(as.data.frame(spi))[,1])
13 sspi$Rank <- rep(1:nrow(x$p.i), ncol(x$p.i))
14 sspi$Site <- rep(x$rn, each = nrow(x$p.i))
15 ggplot(sspi, aes(y = p.i, x = Rank, group = Site)) +
16 geom_line(aes(y = p.i, x = Rank, colour = Site), alpha = .4) +
17 ylab(expression(italic(p[i]))) +
18 theme_classic() + margin_theme()
19 }
20

21 ptype2 <- function(){
22 diversity <- data.frame(div = x$div, Site = factor(x$rn))
23 method <- ifelse(x$method == "simpson", "Simpson diveristy",
24 "Shannon-Weiner diveristy")
25 ggplot(diversity) +
26 geom_bar(aes(y = div, x = Site, fill = div), show.legend = FALSE,
27 stat = "identity") +
28 theme_classic() +
29 margin_theme() +
30 ylab(method) + xlab("Site")
31 }
32 if(plot.RAC) ptype1() else ptype2()
33 }

• The plot method allows the creation of two distinct types of ggplots by calling distinct

sub-functions, ptype1() and ptype2() via the argument plot.RAC (Line one).
• Barplots of site diversities are produced by using the default plot.RAC = FALSEwhich
will run the function ptype2() on Lines 21-31 (Fig 8.2)

• Rank abundance curves (RACs) are created by specifying plot.RAC = TRUEwhich runs

the function ptype1() on Lines 10-19 (Fig 8.3). RAC plots allow graphical expressions

of both taxa richness and evenness, and may even provide insights regarding resource

exploitation in community (Magurran, 1988).



280 CHAPTER 8. FUNCTIONS

plot(v.div)

0.00

0.25

0.50

0.75

10 11 12 13 14 15 16 18 19 2 20 21 22 23 24 25 27 28 3 4 5 6 7 9

Site

S
im

ps
on

 d
iv

er
is

ty

Figure 8.2: Barplot of site diversities from the vegan::varespec data. Note that bar colors
are varied using the diversities themselves, i.e., fill = div.

plot(v.div, plot.RAC = TRUE)



8.6. FUNCTIONS WITH CLASSES AND METHODS 281

0.0

0.2

0.4

0.6

0 10 20 30 40

Rank

p
i

Site

10

11

12

13

14

15

16

18

19

2

20

21

22

23

24

25

27

28

3

4

5

6

7

9

Figure 8.3: Rank abundance curves of the vegan::varespec dataset. Line lengths indicate
species richness. Larger negative slopes indicate less species evenness.

�

8.6.1.2 S4

An S4 class is defined using the function setClass(). Unlike S3 objects and classes, S4 class

components, i.e., slots, must be defined in setClass(), along with the sub-classes of those

components. Here I create an S4 class called univ for comparison to the S3 class univ created
in the previous section.

setClass("univ", slots = list(name = "character", n.students = "numeric",
founded = "numeric"))

The S4 class univwill have three slots: name, n.students, and founded. S4 objects are created
using the new() function.



282 CHAPTER 8. FUNCTIONS

ISU <- new(Class = "univ", name = "Idaho State University",
n.students = 12000, founded = 1905)

The object ISU has the S4 class univ.

class(ISU)

[1] "univ"
attr(,"package")
[1] ".GlobalEnv"

otype(ISU)

[1] "S4"

Here is the structure of the object:

str(ISU)

Formal class 'univ' [package ".GlobalEnv"] with 3 slots
..@ name : chr "Idaho State University"
..@ n.students: num 12000
..@ founded : num 1905

Just as components of a list are accessed using $, the slots of an S4 object are accessed using @.

ISU@founded

[1] 1905

Or with the function slot().

slot(ISU, "founded")

[1] 1905

We set S4 methods using the function setMethod(). Here is an S4 show()method (analogous

to S3 print()) for objects of class univ.

setMethod("show",
"univ",
function(object) {
cat(object@name, "was founded in", object@founded,

"and has an enrollment of",
object@n.students, "students.", sep = " ")

}
)

ISU



8.6. FUNCTIONS WITH CLASSES AND METHODS 283

Idaho State University was founded in 1905 and has an enrollment of 12000 students.

Example 8.17.

As a real-world S4 example, the function stats4::mle() estimates parameters for probability

density functions using the method of maximum likelihood. Below we estimate the rate

parameter for a Poisson distribution, 𝜆, based on a sample of count data.

# count data
y <- c(26, 17, 13, 12, 20, 5, 9, 8, 5, 4, 8)

# MLE for lambda in a Poisson distribution given data in y
nLL <- function(lambda) - sum(dpois(y, lambda, log = T))
# mle finds negative log-likelihoods
fit0 <- stats4::mle(nLL, start = list(lambda = 5),

nobs = length(y))

The MLE for the Poisson rate parameter, from data outcomes in y, is approximately 11.545.

Notably, this is equal to the sample mean of y.

fit0

Call:
stats4::mle(minuslogl = nLL, start = list(lambda = 5), nobs = length(y))

Coefficients:
lambda
11.545

mean(y)

[1] 11.545

The class of fit0 is mle. The class has an S4 designation.

class(fit0)

[1] "mle"
attr(,"package")
[1] "stats4"

otype(fit0)

[1] "S4"

The slot structure of an object from class mle is complex:



284 CHAPTER 8. FUNCTIONS

str(fit0)

Formal class 'mle' [package "stats4"] with 10 slots
..@ call : language stats4::mle(minuslogl = nLL, start = list(lambda = 5), nobs = length(y))
..@ coef : Named num 11.5
.. ..- attr(*, "names")= chr "lambda"
..@ fullcoef : Named num 11.5
.. ..- attr(*, "names")= chr "lambda"
..@ fixed : Named num NA
.. ..- attr(*, "names")= chr "lambda"
..@ vcov : num [1, 1] 1.05
.. ..- attr(*, "dimnames")=List of 2
.. .. ..$ : chr "lambda"
.. .. ..$ : chr "lambda"
..@ min : num 42.7
..@ details :List of 6
.. ..$ par : Named num 11.5
.. .. ..- attr(*, "names")= chr "lambda"
.. ..$ value : num 42.7
.. ..$ counts : Named int [1:2] 14 8
.. .. ..- attr(*, "names")= chr [1:2] "function" "gradient"
.. ..$ convergence: int 0
.. ..$ message : NULL
.. ..$ hessian : num [1, 1] 0.953
.. .. ..- attr(*, "dimnames")=List of 2
.. .. .. ..$ : chr "lambda"
.. .. .. ..$ : chr "lambda"
..@ minuslogl:function (lambda)
.. ..- attr(*, "srcref")= 'srcref' int [1:8] 5 8 5 56 8 56 5 5
.. .. ..- attr(*, "srcfile")=Classes 'srcfilecopy', 'srcfile' <environment: 0x00000243048dffa0>
..@ nobs : int 11
..@ method : chr "BFGS"

�

8.7 Advanced Biometric Examples

Customized R functions can be used to provide straightforward solutions of complex mathe-

matical procedures associated with biological research.

Example 8.18.

Biologists often need to solve systems of dependent differential equations inmodels describing

the propagation of electrochemical signals via action action potentials in neurons (Hodgkin

and Huxley, 1952), or models involving species interactions (e.g., competition or predation).

For instance, the Lotka-Volterra competition model has the form:

𝑑𝑁1
𝑑𝑡

= 𝑟𝑚𝑎𝑥1𝑁1
𝐾1 −𝑁1 − 𝛼12𝑁2

𝐾1
𝑑𝑁2
𝑑𝑡

= 𝑟𝑚𝑎𝑥2𝑁2
𝐾2 −𝑁2 − 𝛼21𝑁1

𝐾2

(8.4)

where 𝑡 denotes time, 𝑟𝑚𝑎𝑥1 is the maximum per capita rate of increase (empirical rate) for

species 1, and 𝑟𝑚𝑎𝑥2 is the empirical rate for species 2,𝑁1 and𝑁2 are the number of individuals



8.7. ADVANCED BIOMETRIC EXAMPLES 285

from species 1 and 2, respectively,𝐾1 = the carrying capacity for species 1, i.e., the maximum

population size for that species,𝐾2 = the carrying capacity for species 2, 𝛼12 is the competitive

effect of species 2 on the growth of species 1, and 𝛼21 is the competitive effect of species 1 on

the growth rate of species 2.

We first bring in the package deSolve, which contains functions for solving ordinary differential

equations (ODEs).

library(deSolve)

We then define starting values for𝑁1 and𝑁2 and model parameters.

xstart <- c(N1 = 10, N2 = 10)
pars <- c(r1 = 0.5, r2 = 0.4, K1 = 400, K2 = 300, a2.1 = 0.4,

a1.2 = 1.1)

Next, we specify the Lotka-Volterra equations as a function. We will include the argument

time = time even though it is not explicitly used in the function. This is required by ODE

evaluators from deSolve.

1 LV <- function(time = time, xstart = xstart, pars = pars){
2 N1 <- xstart[1]
3 N2 <- xstart[2]
4 with(as.list(pars),{
5 dn1 <- r1 * N1 * ((K1 - N1 - (a1.2 * N2))/K1)
6 dn2 <- r2 * N2 * ((K2 - N2 - (a2.1 * N1))/K2)
7 res <- list(c(dn1, dn2))
8 })
9 }

The most complex part of the function occurs on Lines 4-8 where the system of ODEs in Eq

(8.4) is solved. Note the use of with() to make the components of the object pars accessible
between braces on lines four and eight.

The deSolve::rk4() function solves simultaneous differential equations using classical

Runge-Kutta 4th order integration (Butcher, 1987)12. The arguments for rk4() are, in order,

the initial population numbers from species 1 and 2, the time frames to be considered, the

function to be evaluated, and the parameter values.

out <- as.data.frame(rk4(xstart, time = 1:200, LV, pars))

The object out contains the number of individuals in species 1 and 2 (𝑁1 and 𝑁2) for time

frames 1-200 (Fig 8.4).

12The method of Euler (the simplest method to find approximate solutions to first order equations) can be

specified with the function deSolve::euler().



286 CHAPTER 8. FUNCTIONS

plot(out$time, out$N2, xlab = "Time", ylab = "Number of individuals",
type = "l")

lines(out$time, out$N1, type = "l", col = "red", lty = 2)
legend("bottomright", lty = c(1, 2), legend = c("Species 2", "Species 1"),
col = c(1, 2))

0 50 100 150 200

50
10

0
15

0
20

0
25

0

Time

N
um

be
r 

of
 in

di
vi

du
al

s

Species 2
Species 1

Figure 8.4: Solutions from Lotka Volterra ODEs for 𝑡 = {1, 2, ..., 200}. Species 1 and 2 coexist,

but at levels appreciably below their carrying capacities as a result of interspecific competition.

�

Example 8.19.

Parameter estimation in biostatistics often requires optimization of mathematical functions

(finding function minima and maxima). A useful function for this application is uniroot(),
which searches an interval for the zero root of a function. For instance, many location estima-

tors (those which estimate “central” or “typical” values, e.g., estimators of the true underlying

mean) will be the zero root the function:

𝑛
∑
𝑖=1

(𝑥𝑖 − �̂�) (8.5)

where 𝑥𝑖 is the 𝑖th observation from a dataset, and �̂� is an estimator of a true location value.

We will use uniroot() to find a location estimate that provides a zero root for this function.

As data we will use tree heights from the dataframe loblolly.



8.8. THE PROCESS OF FUNCTION EVALUATION IN R 287

data <- Loblolly$height
f <- function(x) sum(data - x)
uniroot(f, c(min(data), max(data)))$root

[1] 32.364

This value is identical to the sample mean of the tree heights.

mean(data)

[1] 32.364

Indeed, the sample mean will be always be the zero root of Eq. (8.5). Normally the differences

of the data points and the location estimate are squared, preceding summation. Minimizing

this function is the process of ordinary least squares.

�

8.8 The Process of Function Evaluation in R

Under construction ### Promises

Exercises

1. Divide the plant height and soil N values from the dataset from Q. 3 in the Exercises for

Chapter 3 (the first two columns of the dataset) by their respective column sums by

specifying an appropriate function as the 3rd argument for apply().

2. Below is McIntosh’s index of site biodiversity (McIntosh, 1967):

𝑈 = √
𝑠

∑
𝑖=1

𝑛2
𝑖

where 𝑠 is the total number of species from a particular site, and 𝑛𝑖 is the number of

individuals from the 𝑖th species, 𝑖 = 1, 2, 3,… 𝑠, from that site.

(a) Write a function to calculate the index.

(b) Check it by running it on the following collection of 𝑛𝑖𝑠 obtained from a single site:

ni <- c(5,4,5,3,2).

3. Below is the Satterthwaite formula for approximating degrees of freedom for the 𝑡
distribution, under heteroscedasticity.

(𝑆2
𝑥

𝑛𝑥
+ 𝑆2

𝑦
𝑛𝑦
)
2

(𝑆2
𝑥/𝑛𝑥)

2

𝑛𝑥−1 + (𝑆2
𝑦/𝑛𝑦)

2

𝑛𝑦−1



288 CHAPTER 8. FUNCTIONS

where 𝑆2
𝑥 is the sample variance for variable 𝑥, 𝑆2

𝑦 is the sample variance for variable 𝑦,
𝑛𝑥 is the sample size for 𝑥, and 𝑛𝑦 is the sample size for 𝑦.

(a) Write a function for this equation that has the variables 𝑥 and 𝑦 as arguments.

(b) Test the function for x <- c(1,2,3,2,4,5) and y <- c(2,3,7,8,9,10,11).

4. Create a function, implementing switch(), that can calculate the first or second deriva-

tive of a mathematical expression with respect to "x". Test it on x^3.

5. Create a function that calculates trimmed means for columns in a quantitative matrix or

dataframe. Within the function, use the triple dot operator as an argument in mean(),
to allow: 1) user-defined trimming (trim is an argument in the function mean()), and
2) user-defined handling of NA outcomes (na.rm is also an argument in mean()). Your
function should have two arguments: one for input data, and one for the triple dot

operator, ... . Test the function on the first two columns of asbio::cliff.sp. In your

test specify both 10% trimming, and the removal of missing values.

6. Here are some classic computer science loop applications.

(a) A sequence of Fibonacci numbers is based on the function:

𝑓(𝑛) = 𝑓(𝑛 − 1) + 𝑓(𝑛 − 2) for 𝑛 > 2
𝑓(1) = 𝑓(2) = 1

where 𝑛 represents the 𝑛th step in the sequence. Using a loop, create the first 100

numbers in the sequence, i.e., find 𝑓(1) to 𝑓(100). As a check, the first five numbers

in the sequence should be: 1, 1, 2, 3, 5.

(b) An interesting chaotic recursive sequence has the function:

𝑓(𝑛) = 𝑓(𝑛 − 𝑓(𝑛 − 1)) + 𝑓(𝑛 − 𝑓(𝑛 − 2)) for 𝑛 > 2
𝑓(1) = 𝑓(2) = 1

Using a loop, create the first 100 numbers in the sequence, i.e., find 𝑓(1) to 𝑓(100).
As a check, the first five numbers in the sequence should be: 1, 1, 2, 3, 3.

7. Create an R animation by creating a for loop 360 steps long that changes the font-size,

color, and string rotation of your name (as a character string) in an otherwise empty

plot. Assuming the index i is used, your loop should include something resembling the

code:

plot(1:10, type = "n")
text(5.5, "your name", cex = i/36, srt = i, col = i)
Sys.sleep(0.1)



8.8. THE PROCESS OF FUNCTION EVALUATION IN R 289

8. The Stirling number of the second kind (or the Stirling partition number) counts the

number of ways a set of 𝑛 objects can be partitioned into 𝑘 groups. This is generally
denoted 𝑆(𝑛, 𝑘) or {𝑛

𝑘}, and is calculated as:

{𝑛
𝑘
} =

𝑘
∑
𝑖=0

(−1)𝑘−𝑖𝑖𝑛

(𝑘 − 𝑖)!𝑖!
.

Write a function that calculates {𝑛
𝑘}without using a for loop.

Use the form: stirling2 <- function(n, k){function contents}.

9. The Bell number,𝐵𝑛, counts the number of ways a set with 𝑛 elements can be partitioned

(Bell, 1938). That is, 𝐵𝑛 will be the sum of Stirling numbers for a particular set, for

𝑘 = {1, 2,… , 𝑛}:

𝐵𝑛 =
𝑛
∑
𝑘=1

{𝑛
𝑘
} .

Write a function for calculating𝐵𝑛 that uses stirling2, from Q 8, in a for loop.

Use the form: belln <- function(n){function contents}.

10. The exercise below concerns the speed of loops in R. Use tapply() to simultaneously

find the mean estimates of Loblolly$height for each level in Loblolly$seed, with

and without a loop, and find the run times of the operations using system.time(). That
is, run the following chunks:

system.time(tapply(Loblolly$height, Loblolly$Seed, mean))

out <- 1:nlevels(Loblolly$Seed)
system.time(for(i in levels(Loblolly$Seed)){

temp <- Loblolly[Loblolly$Seed == i,]
out[i] <- mean(temp$height)

})

Describe and discuss your results.

11. Write a function to solve the systems of ODEs below

𝑑𝑥
𝑑𝑡

= 𝑎𝑥 + 𝑏𝑦

𝑑𝑦
𝑑𝑡

= 𝑐𝑥 + 𝑑𝑦

To test the function, let 𝑎 = 3, 𝑏 = 4, 𝑐 = 5, 𝑑 = 6, and solve for for 𝑡 = 1, 2,… , 20,
using classical Runge-Kutta 4th order integration, as implemented by the function

deSolve::rk4. Initial values for 𝑥 and 𝑦 can be anything but {0, 0}.



290 CHAPTER 8. FUNCTIONS

12. Make output from the function in previous question have an S3 class, and create a plotting

method for objects of this class.



Chapter 9

R Interfaces

“You should try things; R won’t break.”

- Duncan Murdoch, from R-help (May 2016)

Code from other languages can be interfaced to R at the command line prompt and within

R scripts. For instance, we have already considered the use of Perl regex calls for managing

character strings in Ch 4 (Section 4.3). Other examples include code interfaces from C, C++ (via

package Rcpp, Eddelbuettel et al. (2023a), Eddelbuettel (2013), Eddelbuettel and Balamuta

(2018)), Fortran, MATLAB (via package R.matlab, Bengtsson (2022)), Python (via package

reticulate, Ushey et al. (2023)), Java (via package rJava, Urbanek (2021)). R can also be called

from a number of different languages including C and C++ (see package RInside, Eddelbuettel

et al. (2023b)), Java (via the Java package RCaller, Satman (2014)), or Python (via the Python

package, rpy2). For instance, the R package RCytoscape, from the Bioconductor project, al-

lows cross-communication between the popular Java-driven software for molecular networks

Cytoscape, and R.

There are costs and benefits to interfacing with R to and from other languages (Chambers,

2008). Costs include:

• Non interpreted languages (see Section 9.1 immediately below) will require compilation.

Therefore it may be wise to limit such code to package-development applications (Ch

10) since R built-in procedures can facilitate this process during package building.

• Interfacingwith older low level languages (e.g., Fortran and C (Section 9.3)) increases the

possibility for programming errors, often with serious consequences, including memory

faults. That is, bugs bite!

• Interfacing with some languages may increase the possibility for programs being limited

to specific platforms.

• R programs can often be written more succinctly. For instance, Morandat et al. (2012)

found that R programs are about 40% smaller than analogous programs written in C.

Despite these issues, there are a number of strong potential benefits. These include:

• A huge number of useful, well-tested, algorithms have been written in other languages,

291

https://github.com/rpy2
https://bioconductor.org/
https://cytoscape.org/


292 CHAPTER 9. R INTERFACES

and it is often straightforward to interface these procedures through R.

• The system speed of other languages may be much better than R for many tasks. For

instance, algorithms written in non-interpreted languages, are often much faster than

corresponding procedures written in R.

• Non-OOP languages may be more efficient than Rwith respect to memory usage.

This chapter considers interfaces with several important programming languages, including

Fortran, C, C++, and particularly, Python. Interfaces with languages used primarily for GUI

generation and web-based applications, for example, Tcl/Tk, JavaScript, JavaScript Object

Notation (JSON), HTML, and Cascading Style Sheets (CSS), are considered in Ch 11.

9.1 Interpreted versus Compiled Languages

Along with many other useful languages (e.g., Python, JavaScript), R is generally applied as

an interpreted language. Interpreted code must be translated into binary before it can be

executed. This process can slow down function run times, particularly if the function includes

iterative procedures like loops. Non-interpreted (compiled) languages include C, Fortran, and

Java. For these languages, a compiler (a translation program) is used to transform the source

code into a target “object” language, which is generally binary (Ch 11). The end product of the

compilation is called an executable file (Figure 9.1). Executables from other languages can be

called from within R to run R functions and procedures.

Figure 9.1: Creating an executable file in a compiled language.

9.2 Interfacing with R Markdown/RStudio

Language and program interfacing with R is often greatly facilitated through the use of R

Markdownchunks. This is becausemany languages other thanR are supportedbyRMarkdown,

via knitr. The language definition for a particular R Markdown chunk is given by the first

term in that chunk. For instance, ```{r} ``` initiates a conventional R code chunk, whereas

```{python}``` initiates a Python code chunk. Here are the current RMarkdown language

engines (note that items 52-64 are not explicit computer languages).

9.3. FORTRAN AND C 293

names(knitr::knit_engines$get())

[1] "awk" "bash" "coffee" "gawk" "groovy"
[6] "haskell" "lein" "mysql" "node" "octave"
[11] "perl" "php" "psql" "Rscript" "ruby"
[16] "sas" "scala" "sed" "sh" "stata"
[21] "zsh" "asis" "asy" "block" "block2"
[26] "bslib" "c" "cat" "cc" "comment"
[31] "css" "ditaa" "dot" "embed" "eviews"
[36] "exec" "fortran" "fortran95" "go" "highlight"
[41] "js" "julia" "python" "R" "Rcpp"
[46] "sass" "scss" "sql" "stan" "targets"
[51] "tikz" "verbatim" "glue" "glue_sql" "gluesql"
[56] "theorem" "lemma" "corollary" "proposition" "conjecture"
[61] "definition" "example" "exercise" "hypothesis" "proof"
[66] "remark" "solution"

As evident in the output above, RMarkdown engines extend to compiled languages including

Fortran (engine=fortran) andC (engine=c). Ideally, this is accomplishedby compiling source

code in a chunk in an on-the-fly, automated step, using native R compilers, and automatically

loading the resulting compiled executable for potential calls in R chunks (Xie et al., 2020).

This process may be hampered, however, by a number of factors including non-administrator

permissions and environmental path definitions, particularly on Windows computers. As

a result, I present more complex, but more dependable method for code compilation and

execution here.

9.3 Fortran and C

S, the progenitor of R, was created at a time when Fortran routines dominated numerical

programming, and R arose when C was approaching its peak in popularity. As a result, strong

connections to those languages, particularly C, remain in R1. R contains specific base functions

for interfacingwith both C and Fortran executables: .C() and .Fortran()2, respectively. More

flexible general interface functions, which were introduced in later versions of R, and may

1As noted in Ch 1, Fortran is one of the oldest programming languages still in active use. Specifically, although

Fortran’s development followed an IBM proposal for an alternative to assembly language in 1953 (Backus, 1998),

and the first correctly compiled version of Fortran occurred in 1958, Fortran remains among the top programming

languages in the TIOBE index (Wikipedia, 2024d). C is a widely-used general programming language developed

during the 1970s (Ritchie, 1993). Recall that early iterations of Swere strongly dependent on Fortran procedures

(Section 1.4). Further, because R is largely written in C, it is not surprising that the most direct language for

interfacing with R is C (Chambers, 2008).
2The Writing R Extensions guide details several potential problems with .Fortran(), including issues with

passing character strings, and the fact that .Fortran() was primarily intended for Fortran 77 code, which

precludes any support for ‘modern’ Fortran. The guide notes that a better way to interface modern Fortran code

is using .C(), and writing a C interface using use iso_c_binding, a standard Fortran 2003 module that defines

named constants, types, and procedures for C interoperability.

@https://www.tiobe.com/tiobe-index/
https://cran.r-project.org/doc/manuals/R-exts.html

294 CHAPTER 9. R INTERFACES

have better performance characteristics, include .Call() and .External().

Recall that an R object of class numeric will be automatically assigned to base type double,
although it can be coerced to base type integer (this will potentially result in information loss

through the elimination of its “decimal” component). Fortran, C, and many other languages

require explicit user-assignments for underlying base types.

If one is interfacingRwith Fortran or C, only a limited number of base types are possible (Table

9.1), and one will need to use appropriate coercion functions for R objects if one wishes to use

those objects in Fortran or C scripts3. Interfaced C script arguments must be pointers4 and

arguments in Fortran scripts must be arrays for the types given in Table 9.1.

Table 9.1: Correpsonding types for R, C, and Fortran. Table adapted from Chambers (2008).

R base type **R** coercion function C type Fortran type

logical as.integer() int * integer
integer as.integer() int * integer
double as.double() double * double precision
complex as.complex() Rcomplex * double complex
charater as.character() char ** character*255
raw as.character() char * none

9.3.1 Compiling Executables

Raw Fortran source code is generally saved as an .f, or (.f90 or .f95; modern Fortran) file,

whereas C source code is saved as an .c file. One can create a file with the correct file type

extension by using file.create(). For example, below I create a file called foo.f90 that

I can open (from my working directory) in a text editor (e.g., Notepad, RStudio) to build a

Fortran script.

file.create("foo.f90")

Windows executable files compiled from source code will generally have an .exe or .cmd

extension, whereas Mac OS executable files generally have have .app extension. For use in R,

however, these filesmust be shared library executables (see below), with .dll and .so extensions

for Windows and Unix-alike (e.g., Mac-OS) operating systems, respectively. Shared library

objects are different from conventional executables in that they cannot be evaluated directly.

In this case, Rwill be required as the executable entry point5.

3Specifically, the functions .C() and .Call expect that R-dependent code will be used. The functions .C()
and .Fortran(), assume that R objects will not be directly used in algorithms.

4A pointer is a variable used to store the memory address of another variable as its value.
5The extension .dll identifies a Windows dynamic-link library (DLL) file, whereas the extension .so stands for

shared object or shared library file.

9.3. FORTRAN AND C 295

R contains shared library compilers for Fortran and C within the Rcmd executable, which is

located in the R bin directory, along with several other important executables. Rcmd is typically
invoked from a shell command line (in Windows one can access this editor by typing cmd
in the Search bar) using the format: R CMD command argswhere command is currently one
of INSTALL, REMOVE, SHLIB, BATCH, build, check, Rprof, Rdconfig, Rdiff, Rd2pdf, Stangle,
Sweave, config, open, and texify, and args defines arguments specific to the R CMD com-

mand. The shell script:

R CMD SHLIB foo

will prompt the building of a shared library object from the user-defined script foo, which is

generally Fortran or C source code6. The compilation or shared libraries will be facilitated by

the installation of the toolbox bundle Rtools along an accessible environmental path.

Notably, the SHLIB compilers will only work for Fortran code written as a subroutine7 and C

code written in void formats8. As a result, neither code type will return a value directly9.

Example 9.1.

Here is a simple example for calling Fortran and C compiled executables, from R, to speed

up looping. The content follows class notes created by Charles Geyer at the University of

Minnesota. Clearly, the example could also be run without looping. Equation (9.1) shows the

simple formula for converting temperature measurements in degrees Fahrenheit to degrees

Celsius.

𝐶 = 5/9(𝐹 − 32) (9.1)

where 𝐶 and 𝐹 denote temperatures in Celsius and Fahrenheit, respectively.

Here is a Fortan subroutine for calculating Celsius temperatures from a dataset of Fahrenheit

measures, using a loop.

1 subroutine FtoC(n, x)
2 integer n
3 double precision x(n)
4 integer i
5 do 100 i = 1, n
6 x(i) = (x(i)-32)*(5./9.)
7 100 continue
8 end

The Fortran code above consists of the following steps.

6SHLIB stands for shared library
7A Fortran subroutine is invoked with a CALL statement. Unlike a Fortran function, which returns a single

value, a subroutine can return many (or no) values.
8Void functions in C are used for their side effects, such as performing a task or writing to output.
9Several other R CMD commands are addressed in Ch 10, including INSTALL, check, BATCH, build, AND Rd2pdf

https://cran.r-project.org/bin/windows/Rtools/rtools44/rtools.html
http://users.stat.umn.edu/~geyer/rc/

296 CHAPTER 9. R INTERFACES

• OnLine 1 a subroutine is invokedusing the Fortran functionsubroutine. The subroutine
is named FtoC, and has arguments x (the Fahrenheit temperatures) and n (the number

of temperatures)

• On Line 2 the entry given for n is defined to be an integer (Table 9.1).

• On Line 3 we define x to be a double precision numeric vector of length n.
• On Line 4 we define that the looping index to be used, i, will be an integer.

• On Lines 5-7 we proceed with a Fortran do loop. The code do 100 i = 1, nmeans

that the loop will 1) run initially up to 100 times, 2) has a lower limit of 1, and 3) has

an upper limit of n. The code: x(i) = (x(i)-32)*(5./9.) calculates Eq. (9.1). The

code 5./9. is used because the result of the division can be a non-integer. The code 100
continue allows the loop to continue to n.

• On Line 8 the subroutine ends. All Fortran scripts must end with end.

I save the code under the filename FtoC.f90, and transfer it to an appropriate directory (I

use C:/Users/ahoken/Documents/Amalgam/Amalgam_Bookdown/scripts/). I then open a

shell editor (the Windows command shell can be accessed by typing cmd in the Search bar),

and navigate to the R bin\x64 directory. For my Windows machine, the address will be:

C:\Program Files\R-4.4.1\bin\x64.

The shell language for Windows is somewhat similar to the POSIX (Portable Operating System

Interface) compliant shell language generally used by Unix-like systems (guidance can be found

here). For instance, the command cd changes directories, the command cd .. navigates up

(toward the root directory).

I compile FtoC.f90 using the script R CMD SHLIB FtoC.f90. Thus, at the shell command line

I enter:

cd C:\Program Files\R\R-4.4.2\R\bin\x64
R CMD SHLIB C:/Users/ahoken/Documents/Amalgam/Amalgam_Bookdown/scripts/FtoC.f90

Note the change from back slashes to (Unix-style) forward slashes when specifying addresses

for SHLIB. The command above creates the compiled Fortran executable FtoC.dll. Specifically,
the Fortran compiler, GNU Fortran (GCC), is used to create a Unix-style shared library FtoC.o
(GCC is short for GNU compiler collection). This file is then converted to a .dll file, aided by the

RTools GCC 10/MinGW-w64 compiler toolchain. By default, the .dll is saved the directory that

contained the source code. The compilation process can be followed (with difficulty) in the

cryptic shell output below:

Here is an analogous C loop function for converting Fahrenheit to Celsius.

https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/windows-commands

9.3. FORTRAN AND C 297

1

2 void ftocc(int *nin, double *x)
3 {
4 int n = nin[0];
5 int i;
6 for (i=0; i<n; i++)
7 x[i] = (x[i] - 32) * 5 / 9;
8 }

The C code above consists of the following steps.

• Line 1 is a line break. This currently appears to be required for the compilation of C void

functions in SHLIB.
• On Line 2 a void function is initialized with two arguments. The code int *ninmeans

“access the value that nin points to and define it as an integer.” The code double *x
means: “access the value that x points to and define it as double precision.”

• Lines 8-9 define the C for loop. These loops have the general format: for (init;
condition; increment) {statement(s); }. The init step is executed first and

only once. Next the condition is evaluated. If true, the loop is executed. The syntax i++
literally means: i = i + 1.

One again, I save the source code, FtoCc.c, within an appropriate directory. I compile the
code using the command R CMD SHLIB FtoCc.c. Thus, at the shell command line I enter:

cd C:\Program Files\R\R-4.4.2\R\bin\x64
R CMD SHLIB C:/Users/ahoken/Documents/Amalgam/Amalgam_Bookdown/scripts/FtoCc.c

This creates the shared library executable FtoCc.dll.

Below is an R-wrapper that can call the Fortran executable, call = "Fortran", the C exe-
cutable, call = "C", or use R looping, call = "R". Several new functions are used. On Line
10 the function dyn.load() is used to load the shared Fortran library file FtoC.dll, while on
Lines 14-15 dyn.load() loads the shared C library file FtoCc.dll. Note that the variable nin
is pointed toward n, and x is included as an argument in dyn.load() on Line 15. On Line 11
the function .Fortran() is used to execute FtoC.dll, and on Line 16 .C() is used to execute
FtoCc.dll.

1 F2C <- function(x, call = "R"){
2 n <- length(x)
3 if(call == "R"){
4 out <- 1:n
5 for(i in 1:n){
6 out[i] <- (x[i] - 32) * (5/9)

298 CHAPTER 9. R INTERFACES

7 }
8 }
9 if(call == "Fortran"){

10 dyn.load("C:/Users/ahoken/Documents/Amalgam/Amalgam_Bookdown/scripts/FtoC.dll")
11 out <- .Fortran("ftoc", n = as.integer(n), x = as.double(x))
12 }
13 if(call == "C"){
14 dyn.load("C:/Users/ahoken/Documents/Amalgam/Amalgam_Bookdown/scripts/FtoCc.dll",
15 nin = n, x)
16 out <- .C("ftocc", n = as.integer(n), x = as.double(x))
17 }
18 out
19 }

Here I create 108 potential Fahrenheit temperatures that will be converted to Celsius using

(unnecessary) looping.

x <- runif(100000000, 0, 100)
head(x)

[1] 76.391 68.578 12.061 71.886 66.711 72.958

Note first that the Fortran, C, and R loops provide identical temperature transformations. Here

are first 6 transformations:

head(F2C(x[1:10], "Fortran")$x)

[1] 24.661 20.321 -11.077 22.159 19.284 22.755

head(F2C(x[1:10], "C")$x)

[1] 24.661 20.321 -11.077 22.159 19.284 22.755

head(F2C(x[1:10], "R"))

[1] 24.661 20.321 -11.077 22.159 19.284 22.755

However, the run times are dramatically different10. The C executable is much faster than R,

and the venerable Fortran executable is even faster than C!

system.time(F2C(x, "Fortran"))

user system elapsed
0.67 0.28 0.96

system.time(F2C(x, "C"))

user system elapsed

10Run on an Intel Core processor with a clock speed of 3 GHz, and 32 GB of RAM.

9.4. C++ 299

0.58 0.31 0.89

system.time(F2C(x, "R"))

user system elapsed
5.75 0.36 6.23

�

9.4 C++

9.5 Python

Python, whose image logo is shown in Fig 9.2, is similar to R in several respects. Python was

formally introduced in the early 90s, is an open source OOP language that is rapidly gaining

popularity, and its user code is evaluated in an on-the-fly manner. That is Python, like R, is an

interpreted language.

Figure 9.2: The symbol for Python, a high-level, general-purpose, programming language.

Like R, comments in Python are made using the metacharacter #11. Boolean operators are

similar, although, while the unary operator for “not” in R is !, in Python it actually is not, and
Python uses True and False instead of TRUE and FALSE.

There are, however, several fundamental differences. These include the fact that while white

spaces in R code (including tabs) simply reflect coding style preferences –for example, to

increase code clarity– Python indentations denote code blocks12. That is, Python indentations

serve the same purpose as R curly braces. Another important difference is that R object names

can contain a . (dot), while in Python . means: “attribute in a namespace.” Useful guidance

for converting R code to analogous Python code can be found here.

11A Python comment spanning multiple lines can be implemented by enclosing the comment in triple quotes

(""" or ''').
12In computer science this is called significant indentation, or the off-side rule.Significant indentation)

https://www.mit.edu/~amidi/teaching/data-science-tools/conversion-guide/r-python-data-manipulation/

300 CHAPTER 9. R INTERFACES

Python can be downloaded for free from (https://www.python.org/downloads/), and can be

activated from theWindows command line using the command py, and activated from the Mac

and Unix/Linux command line using the command python (Fig 9.3). As with previous sections

on Fortran, C, and C++, this short section is not meant to be a thorough introduction to Python.

General guidance for the Python language can be found at (https://docs.python.org/) and

many other sources including these books.

Figure 9.3: The Python command line interface in Windows.

Note that the standard command line prompt for the Python shell is >>>. We can exit Python

from the command line by typing quit().

9.5.1 reticulate

Because our primary interest is interfacing Python and R, and not Python itself, we will use R

as our base of operations. This will require the R package reticulate.

install.packages("reticulate")
library(reticulate)

RStudio (via reticulate) can be used as an IDE for Python13. In this capacity RStudio will:

• Generate a Python specific environment (to allow separate listing of Python and R

objects).

• Call separate R and Python environments, depending on which language is currently

used in a chunk. Python code can be run in R Markdown (via RStudio) by defining

python (instead of r) as the first option in an RMarkdown chunk.

We can specify a path to the Python system (allowing us to use different versions of Python)

with reticulate::use_python. This is important because specific versions of Python may

dramatically affect the usability of basic Python functions. The code below specifies use of the

current version of Python, as accessed with Sys.which(), which finds full paths to program

executables.

13Many IDEs have been developed specifically for Python, although quite a few are proprietary. Free IDEs

include a primitive Python-bundled interface called IDLE. IDLE can be opened from the Windows command

line using: Path to python.exe\python.exe -m idlelib, Jupyter Notebook, a web-based IDE, with many

useful features, including support for R and Markdown-driven workflow documentation, Spyder, a widely used

IDE, (e.g., Pine (2019)), Python Toolkit, which hasn’t been updated for a while, and pycharm (which also has a

commercial version).

https://www.python.org/downloads/
https://docs.python.org/
https://wiki.python.org/moin/PythonBooks
https://jupyter.org/
https://www.spyder-ide.org/
https://pythontoolkit.sourceforge.net/
https://www.jetbrains.com/pycharm/

9.5. PYTHON 301

use_python(Sys.which("python"))

A Python command line interface can also be called directly in R using:

repl_python()

Python can be closed from the resulting interface (returning one to R) by typing:

exit

One can obtain information about the version of Python currently being used by reticulate by

running the function retuclate::py_config (in R).

reticulate::py_config()

python: C:/Users/ahoken/AppData/Local/Programs/Python/Python311/python.exe
libpython: C:/Users/ahoken/AppData/Local/Programs/Python/Python311/python311.dll
pythonhome: C:/Users/ahoken/AppData/Local/Programs/Python/Python311
version: 3.11.3 (tags/v3.11.3:f3909b8, Apr 4 2023, 23:49:59) [MSC v.1934 64 bit (AMD64)]
Architecture: 64bit
numpy: C:/Users/ahoken/AppData/Local/Programs/Python/Python311/Lib/site-packages/numpy
numpy_version: 1.24.2

NOTE: Python version was forced by use_python() function

Example 9.2.

The following are Python operations, run directly from RStudio.

2 + 2

4

The Python assignment operator is =.

x = 2
x + x

4

Here we see the aforementioned importance of indentation.

if x < 0:
print("negative")

else:
print("positive")

positive

Lack of an indented “block” following ifwill produce an error. Indentations in code can be

made flexibly (e.g., one space, two space, tab, etc.) but they should be used consistently.

302 CHAPTER 9. R INTERFACES

�

9.5.2 Packages

Like R, Python consists of a core language, a set of built-in functions, modules, and libraries

(i.e., the Python standard library), and a vast collection (> 200, 000) of supplemental libraries.

Imported libraries are extremely important in Python because its distributed version has

limited functional capabilities (compared to R). A number of important Python supplemental

libraries, each of which contain multiple packages, are shown in Table 9.2.

Table 9.2: Important supplemental Python libraries. For more information use hyperlinks.

Library Purpose

sumpy Fundamental package for scientific computing

scipy Mathematical functions and routines

matplotlib 2- and 3-dimensional plots

pandas Data manipulation and analysis

sympy Symbolic mathematics

bokeh Interactive data visualizations

We can install Python packages and libraries using the pip package manager for Python14.

Installation only needs to occur once on a workstation (similar to install.packages() in R).
Following installation, one can load a package for a particular work session using the Python

function import (analogous to library() in R)15.

Installation of a Python package, foo, with reticulate, via pip, can be accomplished using the

function reticulate::py_install (in R)16.

py_install("foo", pip = TRUE)

For example, to install the scipy library I use the command:

py_install("scipy", pip = TRUE) # Run in R, if scipy has not been installed

To load the scipy library I could use the Python function import():

import scipy

14The name “pip” is recursive acronym for “Pip Installs Packages.”
15Loading Python libraries (aside from numpy) in reticulatewill produce an error if one specifies a Python

location in use_python() that does not contain the installed libraries.
16This approach generally works well. If problems occur loading libraries reticulate::py_install one can

download libraries from the command line using using pip install foo.

https://docs.python.org/3/library/index.html
https://www.activestate.com/blog/top-10-must-have-python-packages/
https://docs.scipy.org/doc/numpy/reference/index.html
https://docs.scipy.org/doc/scipy/reference
https//matplotlib.sourceforge.net
https://pandas.pydata.org
https://www.sympy.org/en/index.html
https://docs.bokeh.org/en/latest/index.html

9.5. PYTHON 303

9.5.3 Functions in Packages

Functions within Python packages are obtained using a package.function syntax. Here I
import numpy and run the function pi (which is contained in numpy).

import numpy
numpy.pi

3.141592653589793

If we are writing a lot ofmumpy functions, Python will allow you to define a simplified library

prefix. For instance, here I created a shortcut for numpy called np and use this shortcut to

access the numpy functions pi() and sin().

import numpy as np
np.sin(20 * np.pi/180) # sin(20 degrees)

0.3420201433256687

Use of the command from numpy import *would cause names of functions from NumPy to

overwrite functions with the same name from other packages. That is, we could run numpy.pi
simply using pi.

Here we import the package pyplot from the librarymatplotlib, rename the package plt, and
create a plot using the function pyplot.plot() (as plt.plot()) by calling:

1 import matplotlib.pyplot as plt
2 plt.plot(range(10), 'bo')

304 CHAPTER 9. R INTERFACES

0 2 4 6 8

0

2

4

6

8

In Line 2, the command range(10) creates a sequence of integers from zero to ten. This

is used as the first argument of plt.plot(), which specifies the plot 𝑥-coordinates. If 𝑦
coordinates are not specified in the second argument, 𝑥-coordinates will be reused as 𝑦 coor-
dinates. The command 'bo' places blue filled circles at 𝑥,𝑦 coordinates. Documentation for

matplotlib.pyplot.plot() can be found here.

9.5.4 Dataset Storage Types

There are four different built-in dataset storage types in Python: lists, tuples, sets, and dic-

tionaries (Table 9.3). Data storage types of Python objects can be identified with the Python

function type().

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html

9
.5
.
P
Y
T
H
O
N

3
0
5

Table 9.3: The four Python dataset storage types.

Storage type Example Entry characteristics

List ["hot","cold"] Ordered entries, Changeable, Mult. data storage types, Duplicates OK.

Tuple ("hot","cold") Ordered entries, Unchangeable, Mult. data storage types, Duplicates OK.

Set {"hot","cold"} Ordered entries, Unchangeable, Mult. data storage types, Duplicates not OK.

Dictionary {"temp":["hot", cold"]} Ordered entries, Changeable, Mult. data storage types, Duplicates not OK.

306 CHAPTER 9. R INTERFACES

We canmake a Python list, which can contain both text and numeric data, using square brackets

or the function list().

a = [20, 7, "Hi", 7, "end"]

An empty list can be specified as []

empty = []
empty

[]

Like R, we can index list elements using square brackets. Importantly, a[0] refers to the first
element of the list a.

a[0]

20

And the third element would be:

a[3]

7

Square brackets can also be used to reassign list values

a[3] = 10
a

[20, 7, 'Hi', 10, 'end']

We can use the function .append() to append entries to the end of list. For instance, to append
the number 9 to the object a in the previous example, I could type:

a.append(9)
a

[20, 7, 'Hi', 10, 'end', 9]

Unlike a Python list, a data object called a tuple, which is designatedusing parentheses, contains

elements that cannot be changed:

b = (1,2,3,4,5)
b[0]

1

b[0] = 10 # produces error

9.5. PYTHON 307

Multidimensional numerical arrays, including matrices, can be created using functions from

numpy. Here we define:

𝐵 = [1 4 5
9 7.2 4]

and find 𝐵 − 5.

B = np.array([[1, 4, 5], [9, 7.2, 4]])
B

array([[1. , 4. , 5.],
[9. , 7.2, 4.]])

B - 5

array([[-4. , -1. , 0.],
[4. , 2.2, -1.]])

Extensive linear algebra tools are contained in the libraries numpy and scipy.

9.5.5 Mathematical Operations

Basic Pythonmathematical operators are generally (but not always) identical toR. For instance,

note that for exponentiation ** is used instead of ^ (Table 9.4).

Table 9.4: Basic Python mathematical functions and operators.

Operator Operation To find We type

+ addition 2 + 2 2 + 2
- subtraction 2 − 2 2 - 2
* multiplication 2 × 2 2 * 2
/ division 2

3 2/3
** exponentiation 23 2**3
sqrt(x)

√
𝑥

√
2 numpy.sqrt(2)

factorial(x) 𝑥! 5! numpy.math.factorial(5)
pi 𝜋 = 3.141593… 𝜋 numpy.pi
log log𝑒 log𝑒(3) numpy.log

Symbolic derivative solutions to functions can be obtained using functions from the library

sympy. Results from the package functions can be printed in LaTeX for pretty mathematics.

py_install("sympy", pip = TRUE) # run in R if sympy hasn't been installed

Here we solve:
𝑑
𝑑𝑥

3𝑒−𝑥2

308 CHAPTER 9. R INTERFACES

1 from sympy import *
2 x = symbols ('x')
3 fx = 3 * exp(-x ** 2)
4 print(diff(fx))

−6𝑥𝑒−𝑥2

In Line 2, x is defined symbolically using the sympy.symbols() function. The variable x is
used as a term in the expression fx in Line 3. The function fx is differentiated in Line 4 using

the function sympy.diff().

Integration in Python can be handled with the function quad() in scipy. Here we find:

∫
1

0
3𝑒−𝑥2𝑑𝑥

To perform integration we must install the scipy.integrate library using pip and bring in the

function quad().

from scipy.integrate import quad

We then define the integrand as a Python function using the function def(). That is, def() is
analogous to function() in R.

def f(x):
return 3 * np.exp(-x**2)

We now run quad() on the user function fwith the defined bounds of integration.

quad(f, 0, 1)

(2.240472398437281, 2.487424042782217e-14)

The first number is the value of the definite integral (in this case, the area under the function f
from 0 to 1). The second is a measure of the absolute error in the integral.

9.5.6 Reading in Data

Data in delimited files, including .csv files, can be read into Python using themumpy function

loadtxt().

Example 9.3.

Assume that we have a comma separated dataset, named ffall.csv, located in the Python

working directory, describing the free fall properties of some object over six seconds, with

9.5. PYTHON 309

columns for observation number, time (in seconds), altitude (in mm) and uncertainty (in mm).

The Python working directory (which need not be the same as the R working directory in

RStudio) can be identified using the function getcwd() from the library os.

import os
os.getcwd()

'C:\\Users\\ahoken\\Documents\\Amalgam\\Amalgam_Bookdown'

We can load freefall.csv using:

obs, time, height, error = np.loadtxt("ffall.csv",
delimiter = ",", skiprows = 1, unpack = True)

The first row was skipped (using skiprows = 1) because it contained column names and

those were re-assigned when I brought in the data. Note that, unlike R, columns in the dataset

are now attached to the global environment and will overwrite objects with the same name.

height/1000 # height in meters

array([0.18 , 0.182, 0.178, 0.165, 0.16 , 0.148, 0.136, 0.12 , 0.099,
0.083, 0.055, 0.035, 0.005])

File readers in pandas are less clunky (and more similar to R). We can bring in freefall.csv
using the function pandas.read_csv():

py_install("pandas") # Run if pandas is not installed

import pandas as pd # run in a Python chunk
ffall = pd.read_csv('ffall.csv')
ffall

obs time height error
0 1 0.0 180 3.50
1 2 0.5 182 4.50
2 3 1.0 178 4.00
3 4 1.5 165 5.50
4 5 2.0 160 2.50
5 6 2.5 148 3.00
6 7 3.0 136 2.50
7 8 3.5 120 3.00
8 9 4.0 99 4.00
9 10 4.5 83 2.50
10 11 5.0 55 3.60
11 12 5.5 35 1.75
12 13 6.0 5 0.75

310 CHAPTER 9. R INTERFACES

The object ffall is a Pandas DataFrame, which is different in several respects, from an R

dataframe. Column arrays in ffall can be called using the syntax: ffall., or by using braces.
For instance:

ffall.height

0 180
1 182
2 178
3 165
4 160
5 148
6 136
7 120
8 99
9 83
10 55
11 35
12 5
Name: height, dtype: int64

ffall["height"]

0 180
1 182
2 178
3 165
4 160
5 148
6 136
7 120
8 99
9 83
10 55
11 35
12 5
Name: height, dtype: int64

�

In RStudio, R and Python (reticulate) sessions are considered separately. In this process,

when accessing Python from R, R data types are automatically converted to their equivalent

Python types. Conversely, When values are returned from Python to R they are converted back

to R types. It is possible, however, to access each from the others’ session.

The reticulate operator py allows one to interact with a Python session directly from the R

console. Here I convert the pandas DataFrame ffall into a recognizable R dataframe, within

9.5. PYTHON 311

R.

ffallR <- py$ffall

Which allows me to examine it with R functions.

colMeans(ffallR)

obs time height error
7.0000 3.0000 118.9231 3.1615

On Lines 1 and 2 in the chunk below, I bring in the Python library pandas into R with the

function reticulate:import(). The code pd <- import("pandas", convert = FALSE)
is the Python equivalent to: import pandas as pd.

pd <- import("pandas", convert = FALSE)

As expected, the column names constitute the names attribute of the dataframe ffallR.

names(ffallR)

[1] "obs" "time" "height" "error"

The ffall dataset, however, has different characteristics as a Python object. Note that in

the code below the pandas function read_csv() is accessed using pd$read_csv() instead of

pd.read_csv() because an R chunk is being used.

ffallP <- pd$read_csv("ffall.csv")

The names attribute of the pandas DataFrame ffallP, as perceived by R, contains over 200

entities, many of which are provided by the built-in Python module statistics. Here are the first

20.

head(names(ffallP), 20)

[1] "abs" "add" "add_prefix" "add_suffix" "agg"
[6] "aggregate" "align" "all" "any" "apply"
[11] "applymap" "asfreq" "asof" "assign" "astype"
[16] "at" "at_time" "attrs" "axes" "backfill"

I can use these entities to obtain statistical summaries of each column array, revealing an

approach for R/Python syntheses.

ffallP$mean()

obs 7.000000
time 3.000000

312 CHAPTER 9. R INTERFACES

height 118.923077
error 3.161538
dtype: float64

ffallP$var()

obs 15.166667
time 3.791667
height 3495.243590
error 1.512147
dtype: float64

ffallP$kurt()

obs -1.200000
time -1.200000
height -0.692166
error 0.445443
dtype: float64

For further analysis in R these expression will need to be explicitly converted to R objects

using the function py_to_r().

trans <- ffallP$transpose() # transpose matrix
transR <- py_to_r(trans)

apply(transR, 1, mean)

obs time height error
7.0000 3.0000 118.9231 3.1615

9.5.7 Python versus R

R allows much greater flexibility than Python for explicit statistical analyses and graphical

summaries. For example, the Python statistics library Pymer4 actually uses generalized linear

mixed effect model (see Aho (2014)) functions from the R package lme4 to complete com-

putations. Additionally, Python tends to be less efficient than R for pseudo-random number

generation17, since it requires looping to generate multiple pseudo-random outcomes (see

Van Rossum and Drake (2009)).

17A pseudo-random number generator (PRNG) is a deterministic algorithm for generating numbers whose

properties approximate those of random numbers (Wikipedia, 2024f). A PRNG sequence is dependent on an

initial seed value provided to the generator. By default, R PRNG seeds are generated from the current session

time. Details are provided in ?RNG. Numbers from distinct probability distributions can be generated from an

underlying pseudo-random continuous uniform sequence by obtaining the corresponding inverse CDF outcomes

for the same lower-tailed probability. R can employ a large number algorithmic approaches for generating

pseudo-random numbers, including, by default, the “Mersenne-Twister” (Matsumoto and Nishimura, 1998).

9.5. PYTHON 313

Example 9.4.

Here I generate 108 pseudo-random outcomes from a continuous uniform distribution (pro-

cessor details footnoted in Example 9.1).

R:

system.time(ranR <- runif(1e8))

user system elapsed
2.44 0.15 2.61

Python:

1 import time
2 import random
3 ranP = []
4

5 start_time = time.time()
6 for i in range(0,9999999):
7 n = random.random()
8 ranP.append(n)
9 time.time() - start_time

5.985950469970703

The operation takes much longer for Python than R.

The Python code above requires some explanation. On Lines 1 and 2, the Pythonmodules 𝑡𝑖𝑚𝑒
and 𝑟𝑎𝑛𝑑𝑜𝑚 are loaded from the Python standard library, and on Line 3 an empty list ranP is
created that will be filled as the loop commences. On Line 5, the start time for the operation is

recorded using the function time() from the module time. On Line 6 a sequence of length 108
is defined as a reference for the index variable i as the for loop commences. On Lines 7 and 8

a random number is generated using the function random() from the module random and this

number is appended to ranP. Note that Lines 7 and 8 are indented to indicate that they reside

in the loop. Finally, on Line 9 the start time is subtracted from the end time to get the system

time for the operation.

�

On the other hand, the system time efficiency of Python may be better than R for many appli-

cations, including the management of large datasets (Morandat et al., 2012).

Example 9.5.

Here I add the randomly generated dataset to itself in R:

system.time(ranR + ranR)

user system elapsed
0.16 0.16 0.31

314 CHAPTER 9. R INTERFACES

and Python:

start_time = time.time()
diff = ranP + ranP
time.time() - start_time

0.12264370918273926

For this operation, Python is faster.

�

Of course, IDEs like RStudio allow, through the package reticulate, simultaneous use of both R

and Python systems, allowing one to draw on the strengths of each language.

Exercises

1. The Fortran script below calculates the circumference of the earth (in km) for a given

latitude (measured in radians). For additional information, see Question 6 from the

Exercise in 2. Explain what is happening in each line of code below. hi.temps$day2
using do.call().

1 subroutine circumf(x, n)
2 double precision x(n)
3 integer n
4 x = cos(x)*40075.017
5 end

2. Create a file circumf.f90 containing the code and save it to an appropriate directory.

Take a screen shot of the directory.

3. Compile circumf.f90 to create circumf.dll. In Windows this will require the shell

script:

cd Root part of address\bin\x64
R CMD SHLIB Appropriate directory/circumf.f90

You will have to supply your own Root part of address, and Approriate directory
will be the directory containing circumf.f90.

Take a screenshot to show you have created circumf.dll. Running the shell code may

require that you use the shell as an Administrator.)

4. Here is a wrapper18 for circumf.dll. Again, you will have to supply Approriate
directory. Explain what is happening on Lines 2, 4, and 5. And, finally, run:

cearthf(0:90). hi.temps$day2 using do.call().

18Unix-alikes should replace circumf.dllwith circumf.o.

9.5. PYTHON 315

1 cearthf <- function(latdeg){
2 x <- latdeg * pi/180
3 n <- length(x)
4 dyn.load("Appropriate directory/circumf.dll")
5 out <- .Fortran("circumf", x = as.double(x), n = as.integer(n))
6 out
7 }

5. Here is a C script that is identical in functionality to the Fortran script in Q. 1. The

code: #include <math.h> allows access to C mathematical functions, including cos().
Describe what is happening on Lines 7-10.

1

2 #include <math.h>
3

4

5 void circumc(int *nin, double *x)
6 {
7 int n = nin[0];
8 int i;
9 for (i=0; i<n; i++)

10 x[i] = (cos(x[i]) * 40075.017);
11 }

6. Repeat Qs, 2 and 3 for the C subroutine circumc.

7. Here is an Rwrapper for circumc.dll. Explain what is happening on Lines 4-6 and run:

cearthc(0:90).

1 cearthc <- function(latdeg){
2 x <- latdeg * pi/180
3 n <- length(x)
4 dyn.load("Appropriate directory/circumc.dll",
5 nin = n, x)
6 out <- .C("circumc", n = as.integer(n), x = as.double(x))
7 out
8 }

5. Make a Python list with elements "pear", "banana", and "cherry".
(a) Extract the second item in the list.

(b) Replace the first item in the list with "melon".
(c) Append the number 3 to the list.

6. Make a Python tuple with elements "pear", "banana", and "cherry".
(a) Extract the second item in the tuple.

(b) Replace the first item in the tuple with "melon". Was there an issue?

(c) Append the number 3 to the tuple. Was there an issue?

316 CHAPTER 9. R INTERFACES

7. Using def(), write a Python function that will square any value x, and adds a constant c
to the squared value of x.

8. From the Exercises in Ch 2, use Python (or call Python from R) to complete Problem 4 (a-

h). Document your work in RMarkdown (note howmuch better Python is at simplifying

derivatives).

Chapter 10

Building R Packages

“There are two ways of constructing a software design: One way is to make it so

simple that there are obviously no deficiencies, and the other way is to make it so

complicated that there are no obvious deficiencies. The first method is far more

difficult.”

- Tony Hoare, Pioneering British computer scientist

10.1 Introduction

One of strengths of R is its capacity to format and share user-designed software as packages.

Clearly it is possible to apply R for one’s entire scientific career without creating an R package.

However, development of a package, even if it is not distributed to a formal repository, ensures

that your software is trustworthy and portable. Importantly, this chapter only provides a

overview of basic topics in package development. Themost thorough guide to package creation

is the document Writing R Extensions, which is maintained by the the R development core

team.

10.2 Package Components

An R package is a directory of files, generally with nested subdirectories. Specifically,

• DESCRIPTION andNAMESPACE files define fundamental characteristics of the package, e.g.,

the author(s), the maintainer, the package version, the dependency on other packages,

etc.

• Subdirectories, and their nested files, contain the package contents. The following

subdirectories are possible, although not all need to exist within a package.

• The R subdirectory contains the package R code, stored as .r files, and will almost always

exist.

• The data subdirectory contains package datasets, usually stored as .rda files, which can

be created using save().

317

https://cran.r-project.org/doc/manuals/R-exts.html

318 CHAPTER 10. BUILDING R PACKAGES

• The man subdirectory contains the package documentation, stored as .rd files, for func-

tions (in the R directory) and data (in data), and almost always exists.

• The (optional) src subdirectory contains raw source code requiring compilation (C,

C++, Fortran). When building a package Rwill call R CMD SHLIB (see Section 9.3.1) to

create appropriate binary shared library files.

• Other potential subdirectories include: demo, exec, inst, po, tests, tools, and
vignettes.

Fig 10.1 shows the contents of the streamDAG package. These directories, and their files, are

contained within a parent directory called streamDAG.

Figure 10.1: Subdirectory level components of the streamDAG package.

Example 10.1.

Creation of package components can be facilitated with the function package.skeleton() .
From the package.skeleton() documentation Examples (see ?package.skeleton), assume

that we want to build a package that contains two silly functions: (f and g) and two silly

datasets: (d and e).

f <- function(x, y) x + y
g <- function(x, y) x - y
d <- data.frame(a = 1, b = 2)
e <- rnorm(1000)

We specify these as the list argument in package.skeleton() and give the package the

namemypkg.

package.skeleton(list = c("f","g","d","e"), name = "mypkg")

Running this code will cause a package skeleton formypkg to be sent to the working directory.

Note that the skeleton contains the subdirectories: data, r, and man (Fig 10.2). The datasets
d and e were converted to .rda files by package.skeleton() and were placed in the data
subdirectory. The functions f and gwere converted to .r files and placed in the r subdirectory.
Documentation skeletons for both functions and both datasets, as .rd files, were placed in

the man subdirectory. Package DESCRIPTION, NAMESPACE files, and a throw-away (Read-and-
delete-me) file were also created (Fig 10.2).

10.3. DATASETS (THE DATA SUBDIRECTORY) 319

Figure 10.2: Subdirectory level components of the toymypkg package.

�

10.3 Datasets (the data Subdirectory)

Datasets in R are stored in the data subdirectory. Three data formats are possible:

• Raw .r code

• Tabular data (e.g., .txt, .csv files)

• Data ‘images'' created using the functionsave()‘, e.g., .rda or .Rdata files. This
approach is generally recommended, particularly for large datasets. Here we create a

simple .rda dataset, and send it to the working directory.

x <- rnorm(5)
save(x, file = "x.rda")

Data from packages will either be accessible via lazy loading (which allows increased accessi-

bility) or with the data() function. Under the former approach, package data objects will not

be loaded upon loading of their package environment, however promises are created, requiring

the object to be loaded when its name is entered in a session. Lazy loading always occurs for

package R code but is optional for package data. Lazy loading of data can be specified in a

‘LazyData’ field from a package’s DESCRIPTION file (see below). Examples of lazy loaded

data include objects from the package datasets. Note that these do not require data() for

loading:

datasets::BOD # data describing Biochemical Oxygen Demand

Time demand
1 1 8.3
2 2 10.3
3 3 19.0
4 4 16.0
5 5 15.6
6 7 19.8

Under the latter, more common approach, data(*foo*)must be called to allow availability of

the dataset foo.

320 CHAPTER 10. BUILDING R PACKAGES

library(asbio)
data(bighorn.sel) # bighorn sheep resource use and availability
bighorn.sel

resources avail y1 n1
1 Riparian 0.06 0 445
2 Conifer 0.13 6 445
3 Mt. Shrub 1 0.16 9 445
4 Aspen 0.15 18 445
5 Rock outcrop 0.06 14 445
6 Sage/Bitterbrush 0.17 63 445
7 Windblown ridges 0.12 46 445
8 Mt shrub 2 0.04 62 445
9 Prescribed burns 0.09 178 445
10 Clearcut 0.02 49 445

10.4 R Code (the r Subdirectory)

Code for functions is generally stored in the r directory, as .r files. IDEs like RStudio, which
contain options for the generation of .r scripts, e.g., File> New File> R script, can greatly aid

in this process. Single .r files can contain multiple functions, although a one function per file

approach may be easier to manage.

10.5 Documentation (the man Subdirectory)

As functions become complex, it may become difficult to keep track of the meaning of function

arguments, and the characteristics of function output, using a simple notes-to-self approach,

e.g., #. R documentation (.rd) files provide a framework for documenting,R functions, methods,

and datasets. The prompt() family of functions can greatly facilitate the creation of .rd files. In

Example10.1, the functionpackage.skelton()used the functionsprompt() andpromptData
to build documentation skeletons for functions and datasets, respectively. For instance, the

code below was applied to create documentation for the function f().

f <- function(x, y) x + y
prompt(f, filename = "f")

Created file named 'f'.
Edit the file and move it to the appropriate directory.

This code causes the file f.rd to be generated, and sent to the working directory for further

editing (Fig 10.3).

10.5. DOCUMENTATION (THE MAN SUBDIRECTORY) 321

Figure 10.3: Documentation file skeleton for the toy function extttf()

Some guidance for completing .rd files is provided by notes in the skeleton generated by

prompt(). I have removed these notes in Fig 10.3 to save space. As before, the authoritative

resource for documentation building is Writing R Extensions.

Package documentation files can be placed into a man directory and compiled into a single

documentation entity as the package is compiled1, or compiled singly for R objects that a

user deems worthy of documentation. The latter approach is facilitated with the Preview

widget in RStudio, which is available upon opening an .rd file. Running Preview on the file

f.rd resulting in the .html preview shown in Fig 10.4.

1Following package compilation, installation, and loading, this allows access to documentation via

help(documented topic) or ?documented topic (Section 2.4)

https://cran.r-project.org/doc/manuals/R-exts.html

322 CHAPTER 10. BUILDING R PACKAGES

Figure 10.4: Preview of the .html generated from the code shown Fig 10.3.

An .rd file can be converted to legible documentation in .html, .pdf or other formats by de-

positing the file in the R directory containing R CMD routines (e.g., bin/x64), and running

the appropriate R CMD algorithms from the command line. In Windows this requires first

navigating to the directory containing the R CMD routines using the Windows shell command

line editor (see Ch 9). Important R CMD documentation rendering algorithms include:

• R CMD Rd2pdf foo.rd‘, can be used to compile the documentation file foo.rd into a .pdf

document.

• R CMD Rd2txt foo.rd‘, can be used to compile the documentation file foo.rd into a pretty

text format.

• R CMD Rdconv foo.rd‘, can be used to compile the documentation file foo.rd into a variety

formats including plain text, HTML, or LaTeX.

10.6 The DESCRIPTION File

The DESCRIPTION file contains basic information about a package. The DESCRIPTION file

skeleton for themypkg package, created by package.skeleton() in Example 10.1, is shown

in Fig 10.5.

10.6. THE DESCRIPTION FILE 323

Figure 10.5: DESCRIPTION file of the toymypkg package.

The DESCRIPTION file will have a Debian control file format (see ?read.dcf. Specifically,
fields in DESCRIPTIONmust start with the field name, comprised of ASCII (Ch 12) printable

characters, followed by a colon. The value for the field is given after the colon and an additional

space (Fig 10.5). If allowed, field values longer than one line must use a space or a tab to start

a new line. Specification of ‘Package’, ‘Version’, ‘License’, ‘Description’, ‘Title’,
‘Author’, and ‘Maintainer’ fields, shown in Fig 10.5, are mandatory.

• The ‘Package’ field gives the name of the package.

• The ‘Version’ field gives a user-specified package version. It should be a sequence of at
least two non-negative integers separated by single usages ‘.’ and/or ‘-’ characters.

• The ‘Title’ field should provide a descriptive title for the package. It should use title

case (capitals for principal words), and not have any continuation lines.

• The ‘Author’ field describes who wrote the package. Note that if your package contains

wrappers of the work of others, which are included in the src directory, then you are

not the sole author.

• The ‘Maintainer’ field provides a single name followed by a valid email address in

angle brackets (Fig 10.5).

• The ‘Description’ field should provide a comprehensive description of what the pack-

age does. Several (complete) sentences, complete, although these should limited to

one paragraph. The field value should not to start with the package name, or ‘This
package...’.

• The ‘License’ field provides standard open source license information for the package.

Failure to specify license information may prevent others from legally using, or distribut-

ing your package. Standard licenses available from (https://www.R-project.org/Licens

es/) include GPL-2, GPL-3, LGPL-2, LGPL-2.1, LGPL-3, AGPL-3, Artistic-2.0, BSD_2_clause,

and BSD_3_clause MIT. See Writing R Extensions for more information.

• Other optional fields include: ‘Copyright’, ‘Date’, ‘Depends’, ‘Imports’,
‘Suggests’, ‘Enhances’, ‘LinkingTo’, ‘Additional_repositories’, ‘SystemRequirements’,
‘URL’, ‘BugReports’, ‘Collate’, ‘LazyData’, ‘KeepSource’, ‘ByteCompile’,
‘UseLTO’, ‘StagedInstall’, ‘Biarch’, ‘BuildVignettes’, ‘VignetteBuilder’,
‘NeedsCompilation’, ‘OS_type’, and ‘Type’. See Writing R Extensions for more

information on these fields.

https://www.R-project.org/Licenses/
https://www.R-project.org/Licenses/
https://cran.r-project.org/doc/manuals/R-exts.html
https://cran.r-project.org/doc/manuals/R-exts.html

324 CHAPTER 10. BUILDING R PACKAGES

10.7 The NAMESPACE File

The R namespace management system allows package authors to specify which variables in

the package can be exported to package users, and which variables should be imported from

other packages. The mandatory NAMESPACE file for the toymypkg package is extremely simple

(Fig 10.6). It indicates that all four objects contained in the package, and their associated

names, can be exported. If one wishes to export all objects and names for a large package, it is

simpler to specify: exportPattern(.).

Figure 10.6: NAMESPACE file of the toymypkg package.

Import of exported variables from other packages requires specification of import and

importFrom. The import directive imports all exported variables from specified package(s).

Thus, import(foo) imports all exported variables in the package foo. If a package requires

some of the exported variables from a package, then importFrom can be used. The NAMESPACE
directive importFrom(foo, f, g) indicates that f and g from package foo should be

imported.

To ensure that S3 methods for package classes are available, one must register the methods

in the NAMESPACE file. For instance, if a package has a function print.foo() that serves as
a print method for class foo, then one should include S3method(print, foo) as a line in

NAMESPACE.

Package Compilation As with compilation of C and Fortran files (Ch 9), and the

conversion of individual .rd files, the building and installation of a user-designed pack-

age requires depositing the package contents in the R directory containing the R CMD
routines.[Or providing a navigation address to the package for R CMD],[Probably the only R CMD routine isn’t

clearly tied to the development of R packages is Rcmd BATCH, which is used for running R

scripts from the command line.] As before, one must run R CMD routines from the command

line, requiring (in Windows) that a user navigate to the directory containing the R CMD
routines at the Windows shell command line. This is unnecessary in Unix-like operating

system (including MacOS), as these algorithms can be called directly from the computer’s

command line. R CMD routines for package building include:

• R CMD build foo, which would build the package foo.

• R CMD check foo.tar.gz, which would check the tarballed package foo.tar.gz, created by

R CMD build.
• R CMD INSTALL foo.tar.gz can be used to install the package foo.

Example 10.2.

Continuing from Example 10.1, I complete the following steps for package building/compres-

sion, checking, and installation.

• Here I Build a tarballed version of themypkg package using: R CMD build mypkg.

10.7. THE NAMESPACE FILE 325

• Here I check the tarballed versionof thepackageusing: R CMD check mypkg_0.1.tar.gz.

Note that the checks from R CMD check can be extensive (the output above is just an excerpt).

Checks are even more taxing if one uses the option --as-cranwhich performs assessments

one must pass for submission to CRAN.

• Finally, I Install the mypkg package into my workstation using: R CMD INSTALL
mypkg_0.1.tar.gz.

�

Exercises

1. Create an .rd documentation file for the function for McIntosh’s index of site biodiversity

from Exercise 2 in 8. Make a .pdf or .html from the .rd file using the appropriate R CMD
routines.

2. Create an R package consisting of at least one function. Specifically,

326 CHAPTER 10. BUILDING R PACKAGES

(a) Create a skeleton of the package using package.skeleton().
(b) Finish the .rd file(s) in man.
(c) Complete the DESCRIPTION file.
(d) Complete the NAMESPACE file.
(e) Build the package using R CMD build.
(f) Check the package using R CMD check. Modify the package (if necessary) until no

more ERRORS or WARNINGS occur.

Chapter 11

Interactive andWeb Applications

“A user interface is like a joke. If you have to explain it, it’s not that good.”

-Martin LeBlanc, Iconfinder cofounder

11.1 Introduction to GUIs

GUIs (Graphical User Interfaces) allow users to interact with software using graphical icons

and point-and-click specifications. The interactive control components of a GUI are called

widgets. The following are some commonly used GUI widgets:

• button: typically a GUI controller for binary (e.g., on/off or run/don’t run) operations.

• radiobutton: A controller allowing selection from a group of mutually-exclusive options

which are linked to specific operations.

• checkbutton: A controller that allows selection binary of multiple mutually-exclusive op-

tions, and is often linked to a second variable, allowing flexible rendering of a secondary

set of widgets.

• spinbox: Provides a “spin-able” set of mutually exclusive options that can be selected

and linked to operations.

• combobox: A text field with a popdown selection list.

• slider: A sliding controller that defines the numeric value of a linked variable that changes

uniformly over some range.

• message box: A message window that typically prompts a user response and a corre-

sponding linked operation.

• scrollbar: A modifiable viewport for a scrollable object (e.g., text that can be examined

line by line).

• pulldown menus: Interactive menus with pulldown tabs andmenubuttons that specify

operations, potentially including links to other GUIs.

R allowsbuilding of GUIs to run functions and interactwith graphics using a number ofmethods

and language frameworks.

It should be noted that R GUIs are are a mixed bag. On the plus side, R GUIs: 1) increase

327

328 CHAPTER 11. INTERACTIVE ANDWEB APPLICATIONS

user-friendliness by allowing point and click operations, 2) allow rapid visual assessment of

alteration to function arguments via widgets, 3) are often very amenable to graphics manipu-

lations, and 4) are often very useful for data exploration or heuristic demonstrations. On the

other hand,RGUIs: 1) often result in a loss of flexibility in controlling functions, 2)may contain

a visually confusing mish-mash of widgets, and 3) constitute mysterious black boxes, which is

contrary to the “mission statement” of R (Chambers, 2008). Further, command line (non-GUI)

code entry allows an exact record of characteristics given to objects, and specifications pro-

vided to functions. This allows straightforward tracking, dissemination, and repeatability of

computational analyses.

I will explore three methods for generating GUIs, named for the principal R package allowing

their implementation: tcltk, plotly, and shiny.

11.2 tcltk

The R distribution package tcltk (pronounced: tickle tee kay) allows building of GUIs by

providing a bindingwrapper for theTcl language, via theTk toolkit, under a configuration called

Tcl/Tk (Ousterhout, 1991)1. In programming, binding refers to an application programming

interface (API) that provides glue code to allow a programming language to implement a

foreign language or software package (Wikipedia, 2024e). Python bindings for Tcl/Tk are

provided by the Python library tkinter which is included in the Python standard library of

packages. Much better support exists for tkinter than tcltk. Additionally, many non-Tcl/Tk

approaches exist for GUI building in Python, although they are not included in the Python

standard library.

Lack of guidance for the tcltk package is likely due to the absence of a large user group.

Assistance for the creation of tcltk GUIs can be found in several older articles from R News

(which has since been replaced by the R Journal) (Dalgaard, 2001, 2002; Fox, 2007), the book

“Programming GUIs in R” (Lawrence and Verzani, 2018), and in the GUI code for a number of

newerR packages, including Rcmdr (Fox, 2005; Fox et al., 2023) and asbio (Aho, 2023). Despite

resources, however, it is expected that users refer to the Tcl/Tk package manual for argument

lists and descriptions of tcltk functions. Arguments in tcltk functions (generally) have the

same names and functionality as their Tcl/tk equivalents, although some experimentation may

be necessary.

Tcl/Tk itself is cross platform, and uses facilities particular to the underlying OS. These are

Xlib (X11) (a windowing system, written in C, for bitmap displays) for Unix/Linux, Cocoa for

Mac OS, and the Graphics Device Interface (GDI) for Windows.

So-called Themed Tk (Ttk) GUIs often have advantages over older Tk GUIs, including anti-

aliased font rendering, and have been a part of the Tk distribution since Tcl version 8.5.

Naming conventions in tcltk indicate whether functions are binding for Tk or Ttk operations.

The former function names start with tk, while the latter start with ttk.

1Tcl, an acronym for “tool command language,” is an interpreted programming language that is often embedded

into C applications. Tk is a Tcl package for GUI building. Tk, when implemented in Tcl, is termed Tcl/Tk.

https://docs.python.org/3/library/tkinter.html
https://docs.python.org/3/library/index.html
https://wiki.python.org/moin/GuiProgramming
https://wiki.python.org/moin/GuiProgramming
https://www.tcl.tk/man/tcl8.6/UserCmd/contents.html

11.2. TCLTK 329

Notably, tcltk GUIs that use or manipulate R graphics devices, particularly those with slider

widgets, may work poorly with the native RStudio graphics device: RStudioGD. Thus, to run
these sorts of GUIs in RStudio, one should open a non-RStudioGD device using:

dev.new(noRStudioGD = TRUE)

Example 11.1.

The binding mechanisms of tcltk can be viewed by examining underlying code from some its

seminal functions. The tcltk function tcl() provides a generic interface for calling any Tk or
Tcl command2. Indeed, many other tcltk commands are simply calls to tcl().

We see that tcl() calls .Tcl.objv() whose arguments, in turn, are formatted by

.Tcl.args.objv().

require(tcltk)
tcl

function (...)
.Tcl.objv(.Tcl.args.objv(...))
<bytecode: 0x00000242c0d029a0>
<environment: namespace:tcltk>

The function .Tcl.objv() calls an underlying C algorithm, .C_dotTclObjv(), using

.External() that ostensibly binds tcl() to Tcl/Tk.

.Tcl.objv

function (objv)
structure(.External(.C_dotTclObjv, objv), class = "tclObj")
<bytecode: 0x00000242c0d032d0>
<environment: namespace:tcltk>

The compiled C executable (Section 9.1), tcltk.dll, is housed in the tlctk package libs/x64
directory (Ch 10).

tcltk:::.C_dotTclObjv$dll

DLL name: tcltk
Filename: C:/Program

Files/R/R-4.4.2/library/tcltk/libs/x64/tcltk.dll
Dynamic lookup: FALSE

�

2The code: tcl("label", tt, text = "Hello world", bg = "red") is equivalent to tklabel(tt,
text = "Hello world", bg = "red"), where tt is the top-level GUI object. Both prompt the Tcl/tk code:

label tp -text "Hello world" -bg red, where tp is the path name of the Tcl/Tk label object.

330 CHAPTER 11. INTERACTIVE ANDWEB APPLICATIONS

Example 11.2. As an initial foray into tcltk GUI-building we will create a button interface

whose only purpose is to provide a message, and a means for its own destruction.

1 tt <- tktoplevel()
2 hello <- tkmessage(tt, text = "Hello world!")
3 spacer = tklabel(tt, padx = 20)
4 DM.but <- tkbutton(tt, text = "Exit", foreground = "red",
5 background = "lightgreen", padx = 10,
6 command = function() tkdestroy(tt))
7 tkpack(hello, spacer, DM.but)

• On Line 1, I load the tcltk package.

• On Line 2, I use use tktoplevel() to hierarchically define the “top level” widget as the

object tt.
• On Lines 3-4, I create a text message object, hello, and a spacer object, spacer. That
latter is used to make room between the message and a button created in the next two

lines of code.

• On Lines 5-6 the button widget object DM.but is created, using the function tkbutton().
The first argument is name of parent widget, tt. The text argument provides a text

label for the button. The arguments foreground, background, and padx are used to

define the foreground color (the color of the button text label), the background color of

the button, and to make the button wider, respectively. The command argument defines

the function that the button initiates. In this case, the function tkdestroy(), which
destroys the GUI.

• On Line 8, tkpack() is used to place the button on the parent widget.

The GUI itself is shown in Fig 11.1.

Figure 11.1: A simple tcltk GUI.

�

11.2.1 Assigning and Manipulating Widget Values

It is often useful to “remember” object characteristics and assignment values over the course

of a GUI’s usage. For example, it may be necessary to count the number of times a button is

pressed, or display a particular message based on a previous response. Because GUI actions

will be carried out by local variables in functions, modifications to those variables will be lost

11.2. TCLTK 331

when the function exits. While not usually good practice, one can use the super assignment

operator <<- inside a function to create global variables. These will retain their values after

the function exits.

The tclVar() function can be used to create an empty or specific values, which can then be

used in call to other functions in the tcltk package. For example, to specify an empty tclVar()
value, one could use:

myvar <- tclVar('')

To access myvar information in widgets with R one could then use:

rmyvar <- tclvalue(myvar)

Conjoined use of the super-assignment operator with tclVar() and tcl() is often very im-

portant when altering object parameters within tcltk functions.

11.2.2 User functions and tcltk GUIs

Callbacks are functions that are linked to GUI events. In tclk these functions can be

user-defined, although they should not have arguments. Callbacks, user defined or oth-

erwise, are generally executed using the command argument in a widget function. Recall,

for example, use of tkbutton(tt, command = functiton() tkdestroy) in Example

11.2. In general, a callback function foo() is called using command = foo() or command =
substitute(foo()). Use of substitute(foo()) allows substitution of variable values in

foo(). Calling a function bar() from within the callback foo()may require coding similar to

foo <- function(){substitute(bar())}. See, for instance, asbio::anm.ci.tck().

Example 11.3.

Consider the following silly example for finding the sum of two numbers.

1 tt <- tktoplevel()
2 tw1 <- tclVar(''); tw2 <- tclVar('')
3 tke1 <- tkentry(tt, width = 6, textvariable = tw1, justify = "center")
4 tke2 <- tkentry(tt, width = 6, textvariable = tw2, justify = "center")
5

6 sumf <- function(){
7 temp <- as.numeric(tclvalue(tw1)) + as.numeric(tclvalue(tw2))
8 tkconfigure(ans, text = paste(temp))
9 }

10

11 ans <- tklabel(tt, text = '', background="white", relief = "sunken", padx = 20)
12 tkgrid(tke1, tklabel(tt, text = '+'), tke2, tklabel(tt, text = '='), ans)
13 tkgrid(tklabel(tt, text = ''), columnspan = 5)
14 tkgrid(tkbutton(tt, text = 'Get Sum!', foreground = "red",

332 CHAPTER 11. INTERACTIVE ANDWEB APPLICATIONS

15 background = "lightgreen", command = sumf),
16 columnspan = 5, sticky = "e")

• On Line 1, I use tktoplevel() to define the “top level” widget.

• On Line 2, I specify empty initial values for the variables tw1 and tw2 using tclVar().
These values will be editable by users via tkentry()widgets.

• On Lines 3-4, I use the function tkentry() to providewidgets for users to enter numbers

to be summed.

• On Lines 6-9, I create the function sumf. The function tclvalue(), used to compute the

summation object temp, allows Tcl variables from tclVar() to be evaluated in R. These

variables, however, will have class character, andwill require as.numeric(), as shown,

for mathematical evaluation. One Line 8 (the final line of code in sumf, tkconfigure()
is used to potentially change ans, a tkentry() object defined on Line 11.

• On Line 11, the tkentry() object ans is created and an initial empty value is assigned.

• On Lines 12-16, widgets are placed in the GUI using tkgrid(). The use of grid geometry

approaches including tkgrid() is elaborated next. The tkbutton widget in the final

(bottom) grid of the GUI calls the sumf using either command = sumf, as shown, or

command = substitute(sumf()).

The resulting GUI is shown in Fig 11.2.

Figure 11.2: A simple tcltk GUI, demonstrating the use of tclVar() and tclvalue().

�

11.2.3 GUI Geometry

An important consideration in GUI development is geometry management, e.g., the dimensions

of the GUI and the organization of widgets. By default, Tcl/Tk GUI windows are autosized

to hold widgets as they are added. Widgets may be reorganized as the sizes of windows are

altered. If a Window becomes too small to contain widgets, the last widget added will be the

first removed.

The initial size of GUIs can be specified using the function tkcanvas(). The result of the code
below is shown in Fig 11.3

11.2. TCLTK 333

tt <- tktoplevel()
tktitle(tt) = "Wide GUI"
dim <- tkcanvas(tt, height = 30, width = 500)
tkgrid(dim)

Figure 11.3: A tcltk GUI whose initial width was specified using tkcanvas().

Three different geometrymanagers are available in Tcl/Tk for inserting widgets in GUIs. These

are called placer, packer, and grid manager. The placer tool is seldom used in GUI creation

(Dalgaard, 2001). Thus, wewill concentrate onGUI constructionusing packer and gridmanager

approaches. Only one of these approaches is generally used in the creation of a GUI. The initial

Examples 11.2 and 11.3 use simple applications of packing and grid management, respectively.

11.2.3.1 Packing

The function tkpack() packs widgets around the edges of a conceptual cavity. Control of this

process is provided by the side, which has options: "left", "right", "top" or "bottom".

Example 11.4.

Note the result of the code below (Fig 11.4).

1 tt <- tktoplevel()
2 edge <- c("top","right","bottom","left")
3 buttons <- lapply(1:4,
4 function(i) tkbutton(tt, text = edge[i],
5 background = "lightgreen", foreground = "red"))
6 for (i in 1:4)
7 tkpack(buttons[[i]], side=edge[i], fill = "both")

• On Line 1, the top level widget is designated.

• On Line 2, a character vector is created, containing all the possible side options for the
function tkpack().

• On Lines 3-5, a four item list is generated containing four tkbuttonwidgets.

• In Lines 6-7, buttons are accessed from the buttons list and packed, in order, at the spec-
ified locations "top", "right", "bottom", and "left". The argument fill = "both"
ensures that the buttons will occupy all of their allocated parcels with respect to the

tkpack() conceptual central cavity. Because the top button was specified first, it takes

334 CHAPTER 11. INTERACTIVE ANDWEB APPLICATIONS

up the entire top of the GUI. The right button, codified next, occupies the entire right-

side of the GUI, except for the area now occupied by top, and so on. If an object does not

fill its parcel it can be anchored to a GUI location using the tkpack() argument anchor.
This is accomplished by specifying compass-style values like "n" or "sw"which place a

widget the middle top, and bottom left of the parcel, respectively. The default option is

anchor = "center".

Figure 11.4: A demonstration of the result of packing using tkpack(). Code follows (Dalgaard,
2001).

�

Example 11.5.

Calculator construction is often used as a pedagogic exercise in computer programming. As

an extended example of packing using tkframe(), we will build a tcltk calculator GUI. For

this example I am indebted to lecture notes for a 2011 statistical programming course at UC

Berkeley.

The most important coding concept used here is the pairing of the base R functions parse()
(which converts a string to an expression) and eval() (which evaluates an expression). This

combination allows the mathematical evaluation of a character string. Consider the string "9
* 3". The mathematical solution can be obtained using:

txt = "9 * 3"
eval(parse(text = txt))

[1] 27

Our calculator GUI will require three functions: mkput(), clearit(), and docalc(). Each of

the functions creates a global variable, calcinp, using the super assignment operator, <<-,
that provides input to the calculator. Further, in all three functions, tkconfigure() is used to

change the calculator’s display, based on input from the GUI calculator keys.

1 calcinp <- ''
2

3 mkput <- function(sym){

https://www.stat.berkeley.edu/~s133/

11.2. TCLTK 335

4 function(){
5 calcinp <<- paste(calcinp, sym, sep='')
6 tkconfigure(display, text = calcinp)
7 }
8 }

• On Line 1 in the chunk above, calcinp is initially set to be an empty character string,

i.e., calcinp <- ''.

• On Lines 3-8, the callback function mkput is defined. Note that mkput itself contains an
argument-less function. This allows mkput to have an argument, sym, while satisfying
the tcltk requirement for argument-less callbacks. The code on Line 5, calcinp <<-
paste(calcinp, sym, sep=''), generates a global, updated form of calcinp, that
combines an older calcinp value with a new calculator key specification, sym. The
resulting string is placed in the display using tkconfigure().

• The callback function clearit below, clears the display (Line 10), and redefines calcinp
as an empty string (Line 11).

9 clearit <- function(){
10 tkconfigure(display, text = '')
11 calcinp <<- ''
12 }

• The callback function docalc below, evaluates the general eval(parse(text =
calcinp)) framework created by key entry, and provides exception handling in the

case of key stroke errors by using if(class(result) == 'try-error'); calcinp
<<- 'Error' on Lines 15-16. Importantly, the function try() (Line 14) will assign the

class try-error to an expression that fails.

13 docalc <- function(){
14 result = try(eval(parse(text = calcinp)))
15 if(class(result) == 'try-error')
16 calcinp <<- 'Error'
17 else calcinp <<- result
18 tkconfigure(display, text = calcinp)
19 calcinp <<- ''
20 }

We call these three functions in the GUI itself, which is generated in the code below (Lines

21-60).

• The largest calculator code component defines the form and arrangement of calculator

key (27-60). Note that buttons are packed, by row, using tkpack()within tkframe()
objects. All button widgets use command = mkput except for the clear key, which uses
command = clearit, and the equals key, which uses command = docalc.

336 CHAPTER 11. INTERACTIVE ANDWEB APPLICATIONS

21 base <- tktoplevel()
22 tkwm.title(base,'Calculator')
23

24 display <- tklabel(base,justify='right',background="white",
25 relief="sunken", padx = 50)
26 tkpack(display,side='top')
27 row1 <- tkframe(base)
28 tkpack(tkbutton(row1,text='7',command=mkput('7'),width=3),side='left')
29 tkpack(tkbutton(row1,text='8',command=mkput('8'),width=3),side='left')
30 tkpack(tkbutton(row1,text='9',command=mkput('9'),width=3),side='left')
31 tkpack(tkbutton(row1,text='+',command=mkput('+'),width=3),side='left')
32 tkpack(row1,side='top')
33

34 row2 <- tkframe(base)
35 tkpack(tkbutton(row2,text='4',command=mkput('4'),width=3),side='left')
36 tkpack(tkbutton(row2,text='5',command=mkput('5'),width=3),side='left')
37 tkpack(tkbutton(row2,text='6',command=mkput('6'),width=3),side='left')
38 tkpack(tkbutton(row2,text='-',command=mkput('-'),width=3),side='left')
39 tkpack(row2,side='top')
40

41 row3 <- tkframe(base)
42 tkpack(tkbutton(row3,text='1',command=mkput('1'),width=3),side='left')
43 tkpack(tkbutton(row3,text='2',command=mkput('2'),width=3),side='left')
44 tkpack(tkbutton(row3,text='3',command=mkput('3'),width=3),side='left')
45 tkpack(tkbutton(row3,text='*',command=mkput('*'),width=3),side='left')
46 tkpack(row3,side='top')
47

48 row4 <- tkframe(base)
49 tkpack(tkbutton(row4,text='0',command=mkput('0'),width=3),side='left')
50 tkpack(tkbutton(row4,text='(',command=mkput('('),width=3),side='left')
51 tkpack(tkbutton(row4,text=')',command=mkput(')'),width=3),side='left')
52 tkpack(tkbutton(row4,text='/',command=mkput('/'),width=3),side='left')
53 tkpack(row4,side='top')
54

55 row5 <- tkframe(base)
56 tkpack(tkbutton(row5,text='.',command=mkput('.'),width=3),side='left')
57 tkpack(tkbutton(row5,text='^',command=mkput('^'),width=3),side='left')
58 tkpack(tkbutton(row5,text='C',command=clearit,width=3),side='left')
59 tkpack(tkbutton(row5,text='=',command=docalc,width=3),side='left')
60 tkpack(row5,side='top')

A slightly modified form of the GUI (with colored buttons)3 is shown in Fig 11.5.

3Code for Fig 11.5 canbeobtainedusingsource(url("http://www2.cose.isu.edu/~ahoken/book/calctcltk.R")).

11.2. TCLTK 337

Figure 11.5: A Tcl/Tk calculator GUI generated using the R package tcltk.

The Python library tkinter provides a well supported binding resource for Tcl/Tk. As we know

(Ch 9) Python code can be run in R, using the package reticulate. Fig 11.6 shows an analogous

calculator the one shown in Fig 11.5, generated in R via the Python script calc.py, which is

contained at the book website. It is important to note that while the resulting GUI is generated

below in an RStudio R chunk, via reticulate, the code and engines for running the GUI are

Python, and thus, do not actually require R.

library(reticulate)
py_run_file(source_python("http://www2.cose.isu.edu/~ahoken/book/calc.py"))

The function reticulate::source_python() allows one to access Python source code.

338 CHAPTER 11. INTERACTIVE ANDWEB APPLICATIONS

Figure 11.6: A Tcl/Tk calculator GUI generated using Python code via the Python binding

library tkinter. Code follows a Python demo at the the geeksforgeeks website.

�

11.2.3.2 Grid Manager

Use of tkpack() and tkframe() provides a great deal of flexibility for creating GUI layouts.
They are, however, insufficient for handling a number of issues including lining widgets up

vertically and horizontally. The gridmanager function tkgrid() can be used to lay out widgets

in rows and columns using the arguments column and row. Importantly, column = 0 and

row = 0 equate to the first column and first row, respectively, in a GUI or container widget.

Additional important tkgrid() arguments include columnspan, rowspan, and sticky. The
latter argument is analogous to side in tkpack().

Example 11.6.

The callback function below creates a single large blue dot in an R graphics device whose

vertical position can be altered with a slider widget.

1 plot.me <- function(){
2 y <- evalq(tclvalue(SliderValue)) # Evaluate the expression
3 plot(1, as.numeric(y),xlab = "", ylab = "%", xaxt = "n", ylim = c(0,100),
4 cex = 4, col = 4, pch = 19)
5 }

The operation evalq(foo), (Line 2) above, is equivalent to eval(quote(foo)). The operation
quote(foo) simply returns the argument foo as an object of class “call”. }

The GUI code below uses grid geometry to place widgets in specified GUI rows and columns.

https://www.geeksforgeeks.org/python-simple-calculator-using-tkinter/

11.2. TCLTK 339

6 if(names(dev.cur()) == "RStudioGD") dev.new(noRStudioGD = TRUE)
7

8 slider.env <<- new.env()
9 tt <- tktoplevel(); tkwm.title(tt, "Slider demo")

10 SliderValue <- tclVar("50")
11 SliderValueLabel <- tklabel(tt, text = as.character(tclvalue(SliderValue)))
12 tkgrid(tklabel(tt, text = "Slider Value: "),
13 SliderValueLabel, tklabel(tt, text = "%"))
14 tkconfigure(SliderValueLabel, textvariable = SliderValue)
15

16 slider <- tkscale(tt, from = 100, to = 0, showvalue = F,
17 variable = SliderValue, resolution = 1,
18 orient = "vertical", command = substitute(plot.me()))
19

20 tkgrid(slider, column = 0, row = 1, columnspan = 2)
21 message = tkmessage(tt, text = "Move the slider to see changes in the plot")
22 tkgrid(message, column = 3, row = 1)

• On Line 6, I insure that the interactive will work in the RStudio system by creating a

non-RStudio graphics device if the default device is "RStudioGD". The code should work
inside and outside of RStudio.

• On Line 8, I create an environment for the slider widget using new.env().
• On Line 9, I use use tktoplevel() to hierarchically define the “top level” widget as the

object tt, and make a title.

• On Line 10, I define 50 as the initial value for the slider widget that will be created.

• On Line 11, a Tk label is created based on the slider output. Note the pairing of tclVar()
input and tclvalue() output. In this process, the SliderValueLabel label object is
configured to make its value equal to the SliderValue object.

• On Lines 12-13, the SliderValueLabel is inserted between two text strings in a grid

geometry.

• On Lines 16-18, the slider is parameterized using the function tkscale(). The use

of substitute() allows substitution of values for variables bound in the plot.me()
function.

• On Line 20, the slider is placed into the GUI at column 0 and row 1 (the first column and

second row).

• On Lines 21-22, a message is created and placed on the GUI at column 3 and row 1 (the

fourth column and second row).

The form of the final GUI is shown in Figure 11.7.

340 CHAPTER 11. INTERACTIVE ANDWEB APPLICATIONS

Figure 11.7: A tcltk GUI for manipulating an R plot.

�

Example 11.7.

Here is another grid manager example with a radiobutton GUI that allows selection of a

bacterial phylum and printing of "Correct", "Incorrect" text in the console, based on the

button selection. It also embeds a photo.

1 tt <- tktoplevel()
2 tkwm.title(tt, "Bacterial phyla")
3 tkgrid(tklabel(tt, text = "Which pylum is shown?", padx = 5,
4 pady = 5, font = "bold"), column = 1, row = 1)
5

6 values <- c("Acidobacteriota", "Armatimonadota",
7 "Caldisericota", "Cyanobacteriota",
8 "Elusimicrobiota", "Spirochaetota",
9 "Thermomicrobia")

10

11 var <- tclVar(values[0]) # initially, no phyla selected
12

13 tkimage.create("photo", "cyano", file = "figs11/cyano.gif")
14

15 callback <- function() ifelse(tclvalue(var) == "Cyanobacteriota",
16 print("Correct"),
17 print("Incorrect"))
18

19 lf <- ttkframe(tt)
20 sapply(values, function(x) {
21 radio_button <- ttkradiobutton(tt, variable = var,
22 text = x, value = x,
23 command = callback)
24

25 tkgrid(radio_button, pady = 0, padx = 5, sticky = "nw",

11.2. TCLTK 341

26 column = 1, rowspan = 1)
27 })
28

29 tkgrid(tklabel(tt, text = ""), sticky = "n", column = 1,
30 row = 9, columnspan = 1)
31 l <- ttklabel(tt, image = "cyano", relief = "ridge")
32 tkgrid(l, sticky = "nw", rowspan = 10, column = 2,
33 row = 0, pady = 25, padx = 10)

• On Line 1, the top level widget, tt, is designated.
• On Line 2, a GUI title is created.

• On Lines 3-4, the text “Which phylum is shown?” is placed in the column1, row1position,

using the grid manager function tkgrid().
• On Lines 5-9, a character vector of bacterial phylum names is created for use in the GUI.

• On Line 11 the initial phylum selection is specified. The use of tclVar(values[0])
means that no selection will be initially designated.

• OnLine 13, the functiontkimage.create() is used to import a photowith .gif formatting

(currently the only accepted format). The first argument "photo" indicates that an image

will be created from a photo. The second argument creates an object name for the import,

"cyano" that will called in later code.

• On Lines 15-17, a callback function, callback() is created to print the text "correct"
if Cyanobacteriota is selected, and print "incorrect" if some other selection is made.

• On Line 19, an embedded frame is created to hold the radiobuttons.

• On Lines 20-27, sapply() is used to run a user-defined function that embeds radiobut-

tons for each level in the character vector values.
– OnLine21-23, the function creates anobjectradio_buttonusingttkradiobutton().
Note that the top-level path name, tt is given as the first argument, the initial

radiobutton designation is given in the second argument, the arguments text and
valuewill change levels in vaues change. the function callback() is called using

the ttkradiobutton() command argument to respond to the selected radiobutton.

– On Lines 25-26, radiobuttons are stacked, one row at a time, using tkgrid(), as
sapply() cycles through levles in values.

• On Lines 29-30, an aesthetic empty row is created at the bottom of column one create

some additional space.

• On Lines 31-32, the object l is created from the function ttklabel() to hold the image

object cyno, created on Line 13.

• On Lines 33-34, the image is embedded into the entirety of column two.

The final form of the GUI is shown in Fig 11.8.

342 CHAPTER 11. INTERACTIVE ANDWEB APPLICATIONS

Figure 11.8: A radiobutton cltk GUI. Photo from CSIRO, CC BY 3.0, https://commons.wikime-

dia.org/w/index.php?curid=3548094

�

11.2.4 Widget Modifications

Tcl/Tk provides shared modification settings for many of its widgets. These include the

standard arguments foreground (the widget foreground color, see choices here), background
(the widget background color), image (an image to display in the widget)4, relief (the 3D
appearance of the widget), font, and text (a text string to be placed in the widget), among

many others. Be aware, however, that standard Tk widget modifiers may not always align with

Ttk modifiers.

Example 11.8.

Here is an example of a GUI with working (but non-functional) widgets that allows demonstra-

tion of relief, background, and foreground color options for different types of widgets.

1 types = c("flat", "groove", "raised", "ridge",
2 "solid", "sunken")
3 bg = c("beige", "AntiqueWhite1", "aquamarine4", "burlywood3")
4 fg = c("BlueViolet","aquamarine3", "white", "black")
5

6 base = tktoplevel()
7 tkwm.title(base,"Widget Styles")
8

4This requires creation with tkimage.create() (see Example 11.7).

https://www.tcl.tk/man/tcl/TkCmd/colors.htm

11.2. TCLTK 343

9 cnames <- tkframe(base)
10 tkpack(tklabel(cnames, text = "Labels", font = "bold"),
11 side = "left", padx = 3)
12 tkpack(tklabel(cnames, text = "Buttons", font = "bold"),
13 side = "left", padx = 17)
14 tkpack(tklabel(cnames, text = "Radiobuttons", font = "bold"),
15 side = "left", padx = 0)
16 tkpack(tklabel(cnames, text = "Sliders", font = "bold"),
17 side = "left", padx = 22)
18 tkpack(cnames, side = "top", fill = "both")
19

20 mkframe <- function(type){
21 fr <- tkframe(base)
22 tkpack(tklabel(fr, text = type, relief = type,
23 fg = fg[1], bg = bg[1]),
24 side = "left", padx = 5)
25 tkpack(tkbutton(fr, text = type, relief = type,
26 fg = fg[2], bg = bg[2]),
27 side = "left", padx = 30)
28 tkpack(tkradiobutton(fr, text = type, relief = type,
29 fg = fg[3], bg = bg[3]),
30 side = "left", padx = 10)
31 tkpack(tkscale(fr, from = 0, to = 10, showvalue = T,
32 variable = 1, resolution = 1,
33 orient = "horizontal",
34 relief = type, fg = fg[4],
35 bg = bg[4]), side = "left", padx = 14)
36

37 tkpack(fr, side = "top", pady = 5)
38 }
39

40 sapply(types, mkframe)

See Fig 11.9.

344 CHAPTER 11. INTERACTIVE ANDWEB APPLICATIONS

Figure 11.9: Standard widget modifications. Relief styles are varied within each widget type,

and background and foreground colors are varied among widget types.

�

11.2.5 Additional tcltk Packages and Toolkits

Several R packages have been developed to streamline and extend the capacities of the tcltk

package. These include fgui (Hoffmann and Laird, 2009) and PBSmodelling (Schnute et al.,

2023, 2013) which provides wrappers for some Tcl/Tk routines to simplify and facilitate GUI

creation. The gWidgets2 package has ambitiously sought to create R simplifying binding

frameworks for several GUI toolkits including GTK, qt, and Tcl/Tk5. Currently, however, only

the gWidgets2 port for tcltk, called gWidgets2tcltk, is working. The gWidgets2tcltk package

is currently used to build interactive self test questions for the pedagogic statistics package

asbio (Fig 11.10).

asbio::selftest.typeIISS.tck1()

5GTK (formerly GIMP ToolKit and GTK+) and qt (pronounced ‘cute’) are free, open-source, cross-platform,

toolkits for creating GUIs.

11.3. JS AND JSON INTERACTIVE APPS 345

Figure 11.10: A self-test GUI using the gWidgets2tcltk function gcheckboxgroup. For GUI code
type: fix(selftest.typeIISS.tck1).

A number of Tcl/Tk extensions for R are available from the SciViews family of packages (Gros-

jean, 2024), including svDialogs (an attempt at creating standard cross-platform dialog boxes),

svGUI, and tcltk2. These packages, however, have not been updated (at least on CRAN) for

several years.

11.3 JS and JSON Interactive Apps

Many newer interactive R applications are designed and implemented using JavaScript6 (JS) or

JavaScript Object Notation7 (JSON). GUIs generated from these approaches are often embedded

in HTML8 format, and thus can be viewed from web browsers.

There are several widely used R packages for generating these sorts of apps. The two most

popular are plotly and shiny.

• plotly creates interactive HTML/web graphics via the plotly.js JS library for interactive

charts.

• shiny is a package designed by RStudio developers that utilizes other packages, chiefly

htmltools and htmlwidgets.9 to provide direct interfaces between HTML embedded GUIs

and R.

The next two sections of this Chapter will focus on these packages and approaches.

6Java is anOOP language designed to have fewdependencies. Once compiled, Java code can run on all platforms

that support Java. Additional details for Java web design are given here. JavaScript, while linguistically similar to

Java, has many many important differences. For instance, JavaScript is an interpreted language, whereas Java

code is generally compiled.
7JavaScript Object Notation (JSON) was derived from JavaScript largely to facilitate server-to-browser session

communication.
8As noted in Section 2.9.2, HTML (Hypertext Markup Language) is the standard language for structuring web

pages and web content. Basic HTML programming details are available from a number of sources, including this

Mozilla developer site.
9The packages htmltools and htmlwidgetswere created by RStudio developers for R bindings to JS libraries

and HTML code.

https://developer.mozilla.org/en-US/docs/Learn/JavaScript
https://developer.mozilla.org/en-US/docs/Learn/Getting_started_with_the_web/HTML_basics

346 CHAPTER 11. INTERACTIVE ANDWEB APPLICATIONS

11.4 plotly

The package plotly (Sievert, 2020), uses the R package jsonlite, which provides an R binder

for JSON. JSON code is read by the JS library plotly.js to create interactive HTML embedded

graphics (Fig 11.11). Charts resulting from this process are interactive under a standardized

plotly format, although they don’t represent GUIs in a conventional sense.

Figure 11.11: A graph from Sievert (2020) that shows the process of creating an HTML-

embedded plotly chart from a graph generated in R.

Example 11.9.

To provide a simple demonstration I bring in some libraries, including plotly, and the

world.emissions data from package asbio.

1 library(tidyverse); library(plotly)
2 library(asbio); data(world.emissions)
3

4 subset <- world.emissions |>
5 filter(country %in% c("United States", "Mexico", "China",
6 "Germany", "Russia", "Canada")) |>
7 filter(year > 1950 & year <= 2019)

Plotly graphs are rendered using the function plot_ly().

8 plot_ly(subset, x = ~year, y = ~co2) |>
9 add_lines(color = ~country) |>

10 layout(

11.4. PLOTLY 347

11 yaxis = list(tickfont = list(size = 20),
12 title ='CO\U2082 (million tonnes)',
13 titlefont = list(size = 23)),
14 xaxis = list(tickfont = list(size = 20),
15 title='Year',
16 titlefont = list(size = 23)),
17 legend = list(font = list(size = 20))
18)

• On Line 8, I call plot_ly(). Note the use of the tilde operator to call x and y axis variables,
i.e., x = ~year, y = ~co2.

• On Lines 9-18, I call additional plot characteristics using tidyverse pipe operators.

– On Line 9 I use add_lines() to add a line trace to the plot.

– Plot characteristics can be modified in a large number of ways using lists within

the function layout (Lines 10-18).

The result is shown in Fig 11.12. If you are viewing this document as an HTML, the lines in the

plot will be interactive, and the plot will contain a menu that allows summarization of single

or multiple data points, panning and zooming.

348 CHAPTER 11. INTERACTIVE ANDWEB APPLICATIONS

Figure 11.12: Simple plolty chart with an interactive trace and standard plotlymenu shown

(topright).

�

11.4.1 ggplot and plotly

Ggplot2 objects can be converted (imperfectly) to plotly objects using the function

plolty::ggplotly(). Unfortunately, a large number ggplot layout characteristics including
figure margins and locations of 𝑥 and 𝑦 axis labels will not translate to ggplotly(). Instead,
we must call on potentially exhaustive hierarchically nested list components. This can be a

pain, and it may be expedient to build separate list or function objects to facilitate the process.

Example 11.10.

To illustrate I extend the previous example. First, I create a nested list object, k, that specifies
desired margin and axis characteristics.

11.4. PLOTLY 349

1 k <- list(
2 yaxis = list(title = list(font = list(size = 18)),
3 tickfont = list(size = 14)),
4 xaxis = list(title = list(font = list(size = 18)),
5 tickfont = list(size = 15)),
6 margin = list(t = 20, r = 20, b = 80, l = 80))

Here I create a simple ggplot boxplot, g. To get the desired characteristics in the mapped plotly

graph I call on list components in kwithin plotly::layout(). Fig 11.13 shows the result.

7 g <- ggplot(subset, aes(x = country, y = co2)) +
8 geom_boxplot(aes(fill = country)) +
9 theme_classic() +

10 ylab("CO\U2082 (million tonnes)") +
11 xlab("Country")
12

13 ggplotly(g) %>%
14 layout(showlegend = FALSE, xaxis = k$xaxis, yaxis = k$yaxis,
15 margin = k$margin)

350 CHAPTER 11. INTERACTIVE ANDWEB APPLICATIONS

Figure 11.13: Simple plolty barplot, based on a ggplot. Interactive trace for the US shown.

�

Example 11.11.

Here is another application using the function GGally::ggcoef() to create a coefficient plot.
A coefficient plot displays statistical model parameter estimates and confidence intervals. We

can make the plot interactive (in HTML) using ggplotly() (Fig 11.14).

1 library(GGally)
2 model <- lm(log(co2) ~ country + year,
3 data = subset)
4

5 gg <- ggcoef(model,
6 exclude_intercept = TRUE,
7 errorbar_height = .1,
8 color = "blue") +
9 theme_bw()

11.5. SHINY 351

10

11 ggplotly(gg) %>%
12 layout(yaxis = list(tickfont = list(size = 15),
13 title ='',
14 titlefont = list(size = 18)),
15 xaxis = list(tickfont = list(size = 15),
16 title='Parameter estimates',
17 titlefont = list(size = 18)),
18 legend = list(font = list(size = 15))
19)

Figure 11.14: Coefficient plot from the function GGally::ggcoef(), rendered using

ggplotly().

�

11.5 shiny

Probably the easiest and most flexible way to create interactive HTML apps is through tools

in the package shiny. Unlike ploty apps, shiny apps will allow real-time interfacing with R

352 CHAPTER 11. INTERACTIVE ANDWEB APPLICATIONS

for computations. RStudio has internals to facilitate shiny app creation for embedding on

webpages. Examples given here are often based on apps described in Hadley Wickham’s book

Mastering Shiny (Wickham, 2021).

A shiny app will have three components:

• A user interface (ui) specification that defines how your app looks.

• A server function that defines how your app works. The function will (generally) have

three arguments input, output, and session.
• An app execution call that conjoins the user interface and server functions. This is done

with shinyApp()

Example 11.12. As a first example, here is R code for rendering text in an HTML app (Fig

11.15).

1 library(shiny)
2 ui <- fluidPage(
3 "Hello, world!"
4)
5 server <- function(input, output, session) {
6 }
7 shinyApp(ui, server)

Figure 11.15: A very simple shiny app. Code follows Wickham (2021).

• ui: shiny::fluidPage() is a layout function that defines the basic visual structure of

the app (Lines 1-4). Among other things the function allows definition of app rows using

shiny::fluidRow(), and columns (within rows) using shiny::column(). Fluid pages

can rescale their components in real-time to fill the available GUI window width.

• server: For this simple example the server function contains no commands (Lines 5-6).

Although, as a matter of convention, the server arguments: input, output, session
are still included.

• shinyApp: The app function pairs the ui/server objects (Line 7).

�

One canopen anR scriptwith a shiny app skeleton inRStudio by going toFile>NewFile>Shiny
Web Application. This will allow RStudio to recognize the script as app code. This, in turn,

allows running the app by either sending its code to the console (e.g., using Ctrl + Enter), or by

using the Run App button in the ShinyWeb Application toolbar.

Example 11.13. Here is a simple app that lists and provides details about datasets in the

package asbio (Fig 11.16).

11.5. SHINY 353

1 ui <- fluidPage(
2 selectInput("dataset", label = "Dataset",
3 choices = data(package = "asbio")$results[,3])
4)
5 server <- function(input, output, session) {
6 }
7 shinyApp(ui, server)

• ui: fluidPage() includes shiny::selectInput(), an input control function that pro-

vides the user with a select box widget. An appropriate label "Dataset" is defined.

Selection box choices are the third column in data(package = "asbio")$results,
which contains the names of the dataframe object names in asbio.

• server: Once again, the server function contains no commands (Lines 5-6).

• shinyApp: The app function again pairs the ui/server objects (Line 7).

Figure 11.16: A shiny app to allow scrolling through asbio datasets.

The app in Fig 11.16 has limited usefulness because it provides only the asbio dataframe

object names. Indeed, we could get more information by simply running data(package =
"asbio"). Here we insert additional features into the user interface and server to increase

functionality (Fig 11.17).

1 adata <- data(package = "asbio")$results[,3]
2 data(list = adata[1:length(adata)]) # loads all asbio datasets
3

4 ui <- fluidPage(
5 selectInput("dataset", label = "Dataset", choices = adata),
6 verbatimTextOutput("summary"),
7 tableOutput("table")
8)
9

10 server <- function(input, output, session){
11 output$summary <- renderPrint({
12 dataset <- get(input$dataset)
13 summary(dataset)
14 })
15

16 output$table <- renderTable({

354 CHAPTER 11. INTERACTIVE ANDWEB APPLICATIONS

17 dataset <- get(input$dataset)
18 dataset
19 })
20 }
21

22 shinyApp(ui, server)

• The code data(list = adata[1:length(adata)]) loads all the asbio datasets into

the global environment (Line 2).

• ui: fluidPage() now specifies three features, which will occur from top to bottom app,

as they are listed (Lines 4-8).

– The functionsshiny::verbatimTextOutput() (Line6) andshiny::tableOutput()
(Line7) are controls that definehowandwhereoutput (dependingon theorder they

are specified in fluidPage()) are displayed. Specifically, verbatimTextOutput()
displays code, and tableOutput() displays tables.

• server: The server function has been modified to allow interaction with the user

interface (Lines 10-20). It allows generations of two objects: output$summary (Line 11)
and output$table (Line 12), based on input$dataset from the ui.

– output$summary (lines10-14) is a renderedexpression fromshiny::renderPrint().
In particular, this will be output from summary() (Line 13) for columns in

input$dataset which is made available in the object dataset on Line 12. The

output operation is coupled with verbatimTextOutput("summary") in the ui.

– output$table (Lines16-19) is a renderedexpression fromshiny::renderTable().
It will show the raw data in a scrollable table for the dataframe specified in the ui.
This output operation is coupled with tableOutput("table") in the ui.

• shinyApp: As before, we generate the app using: shinyApp(ui, server) (Line 22).

11.5. SHINY 355

Figure 11.17: A modified shiny app to provide summaries of scrollable asbio datasets.

�

11.5.1 ui Details

Input widget functions are specified in the ui. A ui input function, e.g., selectInput()with

first argument "foo", or with inputId = "foo" can be called by server operations using
the script input$foo. Most input functions have a 2nd argument called label that creates a
user-readable label for the control widget on the app. A The 3rd input argument is typically

value which creates a starting value for the widget control. Fig 11.18 shows many of the

standard shiny ui input functions (without output). Important ui import functions are also

listed Table 11.1.

source("shiny_widgets.R")
shiny_widgets()

356 CHAPTER 11. INTERACTIVE ANDWEB APPLICATIONS

Figure 11.18: A variety of shiny input widgets and operations that can be spec-

ified in the ui. By row, the figure depicts widgets generated by the functions:

actionButton(), submitButton(), checkboxInput, checkboxGroupInput(),
dateInput(), dateRangeInput(), fileInput(), helpText(), numericInput(),
radioButtons(), selectInput(), sliderInput(), and textInput(). Also see Table

11.1.

11.5. SHINY 357

Table 11.1: Some important shiny ui input functions.
Function Purpose

actionButton()
actionLink()

Creates an action button or link.

submitButton() Create a submit button.

checkboxInput() Create a checkbox to specify logical values.

dateInput() Create a selectable calendar.

dateRangeInput() Create a pair of selectable calendars.

fileInput() Create a file upload control to upload one or more files.

helpText()
Create help text which can be added to input

to provide additional information.

numericInput() Create an input control for entry of numeric values

radioButtons() Create a set of radio buttons to select item from a list.

selectInput()
Create a selectable list, from which single or multiple items

can be selected.

sliderInput() Constructs a slider widget to elect a number, date, or date-time.

passwordInput Create an control for entry for passwords.

textInput() Create an input control for unstructured text

11.5.1.1 Output

Output functions in the ui create placeholders that can filled by the server function. As

with inputs, outputs require a unique ID. For instance, in Fig 11.19, which provides a

simple summary of the asbio::world.emissions dataset, output$code and output$text
generated in the server are placed in the fluid page using textOutput("text") and

verbatimTextOutput("code").

1 library(asbio)
2 data(world.emissions)
3

4 US <- world.emissions |>
5 filter(country == "United States")
6

7 ui <- fluidPage(
8 textOutput("text"),
9 verbatimTextOutput("code")

10)
11 server <- function(input, output, session) {
12 output$text <- renderText({
13 "Summary of the US CO\u2082 data \n"
14 })
15 output$code <- renderPrint({

358 CHAPTER 11. INTERACTIVE ANDWEB APPLICATIONS

16 summary(US$co2)
17 })
18 }
19

20 shinyApp(ui, server)

Figure 11.19: A simple app providing a single descriptive statistics summary.

Table 11.2 lists some potential ui output functions that can be used in shiny apps.

Table 11.2: Some shiny ui output functions.
Function Purpose

downloadButton()
downloadLink()

Create a download button or link.

To be paired with downloadHandler() in server.
htmlOutput()
uiOutput()

Create an HTML output element.

imageOutput()
plotOutput()

Create a plot or image output element.

To be paired with renderPlot() and renderImage(),
respectively, in server.

outputOptions() Set options for an output object.

modalDialog()
modalButton()

Create a modal dialog interface.

showNotification()
removeNotification()

Show or remove a notification.

textOutput()
verbatimTextOutput()

Create a text output element.

To be paired with renderText() and renderPrint(),
respectively, in server.

urlModal() Generate a modal dialog that displays a URL.

11.5.2 server Details

As noted earlier, the server function requires three arguments: input, output, and session.
The input argument allows assembly of items from the ui front-end to create a list-like

11.5. SHINY 359

object. The output argument in server provides output for ui inputs, often via rendering

and handling functions (Table 11.3).

Table 11.3: Some shiny server rendering and handling functions.

Function Purpose

downloadHandler()
Create a download button or link.

To be paired with downloadButton() and downloadLink() in ui.

renderPlot()
renderImage()

Create a plot or image output element.

To be paired with imageOutput() and plotOutput(),
respectively, in ui.

renderText()
renderPrint()

Create a text output element.

To be paired with textOutput() and verbatimTextOutput(),
respectively, in ui.

Fig 11.20 shows an appwith sliders inputs, generated using the function sliderInput() in the
ui, and text (product) output which is provided to the ui from the server, via renderText().

1 ui <- fluidPage(
2 sliderInput("x", label = "If x is", min = 1, max = 50, value = 30),
3 sliderInput("y", label = "And y is", min = 1, max = 50, value = 30),
4 "then x times y is",
5 textOutput("product")
6)
7

8 server <- function(input, output, session) {
9 output$product <- renderText({

10 input$x * input$y
11 })
12 }
13

14 shinyApp(ui, server)

360 CHAPTER 11. INTERACTIVE ANDWEB APPLICATIONS

Figure 11.20: A simple slider app.

11.5.3 Running shiny Apps in R Markdown

Unlike plotly graphics, shiny apps are not automatically interactive in anRmarkdown rendered

document. However, it is easy to a make shiny app interactive in this setting (provided that R

is open to run the app). One simply adds runtime:shiny to the RMarkdown YAML header.

Thus, the YAML header in Rmarkdown should have the format of Fig 11.21. Note that this

approach will now be possible under Bookdown.

Figure 11.21: YAML header to allow inclusion of shiny apps in an R Markdown generated

HTML.

Some adjustments to R and Markdown code may be needed (e.g., figure margins in

renderPlot()may need to be changed) to make apps fit nicely on a page. A shiny app will

only work remotely (outside of an R session) if a server implementing R is used to implement

the app’s code. This process will be detailed at the end of the chapter.

11.5. SHINY 361

11.5.4 Reactive Programming

We can increase efficiency in Shiny apps using reactive programming wherein outputs au-

tomatically update as inputs change. Under reactive programming we specify interactive

dependencies so that when an input changes, all related outputs are automatically updated.

The code below results in the app shown in Fig 11.22. Note that the output updates “reactively’ ’

as I type individual characters of my name.

1 ui <- fluidPage(
2 textInput("name", "What's your name?"),
3 textOutput("greeting")
4)
5

6 server <- function(input, output, session) {
7 output$greeting <- renderText({
8 paste0("Hello ", input$name, "!")
9 })

10 }
11 shinyApp(ui, server)

Figure 11.22: Reactive behavior of a simple shiny app.

Reactive programming usually occurs in more complex settings than the previous example

and requires the function reactive.

Example 11.14.

Asanextendedexample, imaginewewish to rapidly examinegreenhouse emissionsdata for the

fifty countries in the asbio::world.emissions dataset with the highest current populations.

362 CHAPTER 11. INTERACTIVE ANDWEB APPLICATIONS

As a first step, we do some data tidying and create a stats summary callback function we will

use later.

1 library(tidyverse)
2 not.redundant <- world.emissions |> filter(continent != "Redundant")
3

4 pop.max <- not.redundant |>
5 group_by(country) |>
6 summarise(max.pop = max(population)) |>
7 arrange(desc(max.pop))
8

9 # names of 50 largest countries
10 country_names <- setNames(nm = pop.max$country[1:50])
11

12 # 50 largest countries data
13 top50 <- not.redundant |>
14 filter(country %in% pop.max$country[1:50])
15

16 # summary stats
17 summarize <- function(x, rn = c("CO2", "CH4", "NOx", "total GHG")){
18 mean <- apply(x, 2, function(x) mean(x, na.rm = T))
19 max <- apply(x, 2, function(x) max(x, na.rm = T))
20 sum <- apply(x, 2, function(x) sum(x, na.rm = T))
21 n <- apply(x, 2, function(x) length(which(!is.na(x))))
22 df <- data.frame(mean = mean, max = max, cumulative = sum, n = n)
23 row.names(df) <- rn
24 df
25 }

• ui: We define a relatively complex ui that will provide sufficient inputs and outputs for

the server function.

26 ui <- fluidPage(
27 titlePanel(h1("Greenhouse gasses", align = "center")), #h1 = HTML heading
28 fluidRow(
29 column(6,
30 selectInput("country", choices = country_names, label = "Country")
31)
32),
33 fluidRow(
34 column(4, tableOutput("diag")), # table
35),
36 br(), # line break
37 br(),
38 fluidRow(

11.5. SHINY 363

39 column(12, plotOutput("plot")) # plot
40)
41)

• Note that we use the fluidRow() layout function. Shiny app rows, created with

fluidRow(), contain twelve columns. These can be divided up in various ways using

shiny::column()(Fig 11.23).
• The functions htmltools::br() and htmltools::h1() are HTML tags from the pack-

age htmltools, which is imported by shiny. The h1() function creates a first level head-

ing. Thus, it is equivalent to the HTML operator <h1>. The br() functions equates

to an HTML line break tag, i.e.,
. A list of HTML equivalent tags is provided in

?htmltools::builder.
• The function plotOutput() allows input of interactive R graphs, including ggplots (see

below).

Figure 11.23: Behavior of shiny app rows and columns, in the ui. Figure taken fromWickham

(2021).

• server:: The server function contains several new features, including use of the func-

tion reactive().

42 server <- function(input, output, session) {
43 selected <- reactive(top50 %>% filter(country == input$country))
44

45 output$diag <- renderTable(
46 summarize(select(selected(), co2, methane, nitrous_oxide, total_ghg)),
47 colnames = TRUE, rownames = TRUE
48)
49

50 output$plot <- renderPlot({
51 selected() %>%
52 ggplot(aes(year, co2)) +
53 geom_line() +

364 CHAPTER 11. INTERACTIVE ANDWEB APPLICATIONS

54 labs(x = "Year",
55 y = expression(paste(CO[2], " emissions (", 10^6, " tonnes)")))
56 })
57 }

• The code:

selected <- reactive(top50 %>% filter(country == input$country))

provides a data subset for a particular country that only needs to be calculated once, and

then re-used. This also allows spontaneous (as possible) interaction with the uiwith respect

to this choice. The reactive object selected is called several times, as a function, in the

server function. - The object output$plot <- renderPlot() will be a ggplot generated

from selected()which will be called by plotOutput("plot") in the ui.

• shinyApp: As before, we generate the app using:

58 shinyApp(ui, server)

The final form of the app is shown in Fig 11.24.

Figure 11.24: A shiny app to graphically depict changing CO2 levels over time for a user-selected

country.

�

Example 11.15.

Wickham (2021) used 𝑡-test computations to demonstrate reactive programming as shown

11.5. SHINY 365

(with some modifications) below. We first delineate two callback functions we wish to use in

the app.

1 freqpoly <- function(x1, x2, binwidth = 0.1, xlim = c(-3, 3)) {
2 require(ggplot2)
3 df <- data.frame(
4 x = c(x1, x2),
5 group = c(rep("x1", length(x1)), rep("x2", length(x2)))
6)
7 ggplot(df, aes(x, colour = group)) +
8 geom_freqpoly(binwidth = binwidth, linewidth = 1) +
9 coord_cartesian(xlim = xlim)

10 }
11

12 t_test <- function(x1, x2) {
13 test <- t.test(x1, x2)
14 sprintf(
15 "p-value: %0.3f \nCI for µ1 - µ2: [%0.2f, %0.2f]",
16 test$p.value, test$conf.int[1], test$conf.int[2]
17)
18 }

The function t.test() runs 𝑡-tests for true normal population means. In particular, assuming

𝑋1 ∼ 𝑁(𝜇1, 𝜎2
1),𝑋2 ∼ 𝑁(𝜇2, 𝜎2

2)we generally consider the hypotheses:

H0 ∶ 𝜇1 = 𝜇2

HA ∶ 𝜇1 ≠ 𝜇2

By default, t.test() does not assume homoscedasticty (that is, it allows 𝜎2
1 ≠ 𝜎2

2). Thus, it

uses the Satterthwaite method to estimate degrees of freedom for the null 𝑡-distribution of the

test statistic (Aho, 2014). The GUI we will create will run 𝑡-tests on randomly generated data

from two user-specified normal distributions x1 and x2.

The function sprintf() in t_test() uses C code to return a formatted combination of text

and variable outcomes. The code below combines text and inputs for double precision values

(indicated with f) for 𝑝-values, and bounds for a 95% confidence interval for a true mean

difference. The code %0.3f indicates rounding to three significant digits. As before, the code
\n creates a text line break.

• ui: we use the function numericInput() to specify characteristics of the normal distri-

butions under consideration. The sliderInput() function is used to specify x-limits in

app-rendered ggplot frequency plot.

366 CHAPTER 11. INTERACTIVE ANDWEB APPLICATIONS

19 ui <- fluidPage(
20 fluidRow(
21 column(4,
22 "Distribution 1",
23 numericInput("n1", label = "n", value = 200, min = 1),
24 numericInput("mean1", label = "µ", value = 0, step = 0.1),
25 numericInput("sd1", label = "\u03c3", value = 0.5, min = 0.1, step = 0.1)
26),
27 column(4,
28 "Distribution 2",
29 numericInput("n2", label = "n", value = 200, min = 1),
30 numericInput("mean2", label = "µ", value = 0, step = 0.1),
31 numericInput("sd2", label = "\u03c3", value = 0.5, min = 0.1, step = 0.1)
32),
33 column(4,
34 "Frequency polygon",
35 numericInput("binwidth", label = "Bin width", value = 0.1, step = 0.1),
36 sliderInput("range", label = "range", value = c(-3, 3), min = -5, max = 5)
37)
38),
39 fluidRow(
40 column(12, plotOutput("hist"))
41),
42 fluidRow(
43 column(1),
44 column(5, verbatimTextOutput("ttest")),
45 column(2),
46 column(3, actionButton("simulate", "Simulate!")),
47 column(1)
48)
49)

• server: In the server we use reactive programming to generate random samples from

a normal distribution. Specifically, for the object x1 we obtain a random sample of

size input$n1 from a normal distribution with a mean of input$mean1 and a standard

deviation of input$sd1. These parameter values are specified in the ui.

50 server <- function(input, output, session) {
51 x1 <- reactive({input$simulate
52 rnorm(input$n1, input$mean1, input$sd1)})
53 x2 <- reactive({input$simulate
54 rnorm(input$n2, input$mean2, input$sd2)})
55

56 output$hist <- renderPlot({
57 freqpoly(x1(), x2(), binwidth = input$binwidth, xlim = input$range)
58 }, res = 96)

11.5. SHINY 367

59

60 output$ttest <- renderText({
61 t_test(x1(), x2())
62 })
63 }

- shinyApp: As before, we generate the app using:

64 shinyApp(ui, server)

The final form of the app is shown in Fig 11.25.

Figure 11.25: A shiny app to demonstrate the mechanism of 𝑡-tests.

�

11.5.5 Additional Layout Control

We have already learned about techniques like fluidRow() to control single page layouts in
fluidPage(). Another popular HTML layout uses side panels. These can be implemented in

the shiny ui using the functions sidebarLayout() and sidebarPanel(). Sidebar formatting

is summarized in Fig 11.26.

368 CHAPTER 11. INTERACTIVE ANDWEB APPLICATIONS

Figure 11.26: Sidebar formatting for shiny. Figure taken fromWickham (2021).

Example 11.16.

Here is an example for displaying a normal distribution using sliders in sidebars.

• ui: The user interface specifies a sidebar layout, using sidebarLayout(), that contains
a sidebar panel designated with sidebarPanel, and a main panel, designated with

mainPanel().

1 ui <- fluidPage(
2 titlePanel(h1("Normal Distribution", align = "center")),
3 sidebarLayout(
4 sidebarPanel(
5 sliderInput("mu", "\u03BC", step = 0.2, min = -3,
6 max = 3, value = 0),
7 sliderInput("sigma", "\u03C3", min = 0.5, max = 3,
8 value = 1), width = 4
9),

10 mainPanel(plotOutput("plot"))
11))

• server: The only output from the server is a base R plot of the normal PDF.

12 server <- function(input, output, session) ({
13 xmin <- -4; xmax <- 4; ymin <- 0; ymax <- 0.8
14 xx <- seq(xmin, xmax, length = 100)
15

16 output$plot <- renderPlot({
17 yy <- dnorm(xx, input$mu, input$sigma)
18 plot(xx, yy, type = "l", xlim = c(xmin, xmax), ylim = c(ymin, ymax),
19 xlab = expression(italic(x)),
20 ylab = expression(paste(italic(f), "(", italic(x), ")", sep = "")),
21 cex.axis = 1.2, cex.lab = 1.2, lwd = 1.4)

11.5. SHINY 369

22 })
23 })

} - shinyApp: As before, we use shinyApp() to generate the app.

24 shinyApp(ui, server)

The final form of the app is shown in Fig 11.27.

Figure 11.27: A shiny app for demonstrating the normal distribution.

Interestingly, the app appears less reactive than an analogous plot GUI generated with tcltk.

Compare the app from Fig 11.27 to asbio::see.norm.tck().

�

11.5.5.1 Multi-page Apps

Complex apps may be impossible to fit onto a single page. In shiny, the simplest way to break a

app page into multiple pages is to use tabsetPanel() and tabPanel(). Wickham (2021) that

does not provide widget output because of its empty server (Fig 11.28). In the ui a tabset
panel is generated using tabsetPanel(). This entity has three panels, each is generated using
tabPanel(). Only the first panel "Import data" currently contains content.

1 ui <- fluidPage(
2 tabsetPanel(

370 CHAPTER 11. INTERACTIVE ANDWEB APPLICATIONS

3 tabPanel("Import data",
4 fileInput("file", "Data", buttonLabel = "Upload..."),
5 textInput("delim", "Delimiter", ""),
6 numericInput("skip", "Rows to skip", 0, min = 0),
7 numericInput("rows", "Rows to preview", 10, min = 1)
8),
9 tabPanel("Set parameters"),

10 tabPanel("Visualise results")
11)
12)
13

14 server <- function(input, output, session) {
15 }
16 shinyApp(ui, server)

Figure 11.28: A shinymultipanel example.

A tabset can be an input when its id argument is used. This allows an app to behave differently

depending on which tab is currently visible (Fig 11.29).

1 ui <- fluidPage(
2 sidebarLayout(
3 sidebarPanel(
4 textOutput("panel")

11.5. SHINY 371

5),
6 mainPanel(
7 tabsetPanel(
8 id = "tabset",
9 tabPanel("panel 1"),

10 tabPanel("panel 2"),
11 tabPanel("panel 3")
12)
13)
14)
15)
16 server <- function(input, output, session) {
17 output$panel <- renderText({
18 paste("Current panel: ", input$tabset)
19 })
20 }
21 shinyApp(ui, server)

Figure 11.29: Tabs for a multi-page app.

Because tabs are displayed horizontally, there is a limit to their number. The functions

navlistPanel(), navbarPage(), and navbarMenu() provide vertical layouts that allowmore

tabs with longer titles (Fig 11.30).

1 ui <- fluidPage(
2 navlistPanel(
3 id = "tabset",
4 "Heading 1",
5 tabPanel("panel 1", "Panel one contents"),
6 "Heading 2",
7 tabPanel("panel 2", "Panel two contents"),
8 tabPanel("panel 3", "Panel three contents")
9)

10)
11

372 CHAPTER 11. INTERACTIVE ANDWEB APPLICATIONS

12 server <- function(input, output, session) {
13 }
14 shinyApp(ui, server)

Figure 11.30: A multi-page app with vertical tabs.

11.5.5.2 Layout Themes

Customization of the general shiny layout canbe obtainedbyutilizing ormodifyingBootstrap10

themes and classes. These can include layouts specific to mobile apps (see package RInterface)

and Google’s material design frame (see package shinymaterial).

Here we use the "darkly" bootswatch (Fig 11.31). Other choices include "sandstone",
"flatly", and "united".

1 ui <- fluidPage(
2 theme = bslib::bs_theme(bootswatch = "darkly"),
3 sidebarLayout(
4 sidebarPanel(
5 textInput("txt", "Text input:", "text here"),
6 sliderInput("slider", "Slider input:", 1, 100, 30)
7),
8 mainPanel(
9 h1(paste0("Theme: darkly")),

10 h2("Header 2"),
11 p("Some text")
12)
13)
14)
15

16 server <- function(input, output, session) {
17 }
18 shinyApp(ui, server)

10Bootstrap is a collection of HTML conventions, Cascading Style Sheets (CSS) styles (CSS is a language used to

style HTML documents, including colors and fonts), and java script snippets bundled into a convenient form.

11.5. SHINY 373

Figure 11.31: A shiny app using the darkly bootswatch from Bootstrap.

Further control of shiny apps can be achieved by programming directly in HTML, CSS, and

Java11. In fact, HTML code in uis is revealed by running ui functions directly in the R console

(Fig 11.32).

Figure 11.32: Representation of shiny code as HTML code.

11.5.6 plotOutput Interactives

One of the perks of plotOutput() is that it can be an input that responds to mouse pointer

events. Such controls are also possiblewith tcltk GUIs. A shiny plot can respond to four different

mouse events: click, dblclick (double click), hover (i.e., the mouse stays in the same place),

and brush (a rectangular selection tool).

Example 11.17.

Consider the following simple example:

11for more information, check this R-studio help link and this link to a book by David Granjon

https://shiny.rstudio.com/articles/html-ui.html
https://unleash-shiny.rinterface.com/index.html

374 CHAPTER 11. INTERACTIVE ANDWEB APPLICATIONS

1 US <- world.emissions %>% filter(country == "United States")
2

3 ui <- fluidPage(
4 plotOutput("plot", click = "plot_click"),
5 verbatimTextOutput("info")
6)
7

8 server <- function(input, output) {
9 output$plot <- renderPlot({

10 par(mar = c(5,5,2,2))
11 plot(US$year, US$co2, xlab = "Year",
12 ylab = expression(paste(CO[2], " (",10^6, " tonnes)")), type = "l")
13 }, res = 96)
14

15 output$info <- renderPrint({
16 req(input$plot_click)
17 x <- round(input$plot_click$x, 2)
18 y <- round(input$plot_click$y, 2)
19 cat("[year = ", x, ", CO2 = ", y, " million tonnes]", sep = "")
20 })
21 }
22 shinyApp(ui, server)

} Note the use of req(), to ensure the app doesn’t do anything before the first click. The

resulting app is shown in Fig 11.33.

11.5. SHINY 375

Figure 11.33: A mouse interactive shiny app.

Here we use nearPoints() to return a dataframe for a point near a mouse click.

1 US.ghg <- data.frame(US[,c(3,4,10,11,12,14,15)])
2

3 ui <- fluidPage(
4 plotOutput("plot", click = "plot_click"),
5 tableOutput("data")
6)
7 server <- function(input, output, session) {
8 output$plot <- renderPlot({
9 par(mar = c(5,5,2,2))

10 plot(US.ghg$year, US.ghg$co2, xlab = "Year",
11 ylab = expression(paste(CO[2], " (",10^6, " tonnes)")),
12 type = "l")
13 }, res = 96)
14

15 output$data <- renderTable({
16 nearPoints(US.ghg, input$plot_click,
17 xvar = "year", yvar = "co2")

376 CHAPTER 11. INTERACTIVE ANDWEB APPLICATIONS

18 })
19 }
20 shinyApp(ui, server)

The resulting app is shown in Fig 11.34.

Figure 11.34: Another mouse interactive shiny app.

�

11.5.7 Putting Your App Online

A shiny app will only work remotely (outside of an R session) if a server implementing R is

used to call the app’s code. RStudio helps with this by housing a shiny server site shinyapps.io

(Fig 11.35). The site is currently free of charge for a relatively small number of personal

applications.

11.6. COMPARISON OF GUI-GENERATING APPROACHES 377

Figure 11.35: The shiny apps website https://www.shinyapps.io/.

My personal shinyapps.io account is shown in Fig 11.36.

Figure 11.36: My personal shiny apps website, with three apps.

The account houses links for some apps summarizing the green house gas data, and the Hardy

Weinberg equilibrium.

11.6 Comparison of GUI-generating Approaches

Three R GUI building approaches were described in this chapter. The package tcltk uses the

Tcl/Tk GUI building tools alongside the native windowing capacities ofWindows, Unix-like and

Mac operating systems. The plotly and shiny libraries render GUIs under an HTML framework.

A final comparative summary of the three approaches is given in Table 11.4.

https://www.shinyapps.io/
https://ahoken.shinyapps.io/Examples_of_Interactives_v1/
https://ahoken.shinyapps.io/seeHW/
https://ahoken.shinyapps.io/seeHW/

3
7
8

C
H
A
P
T
E
R
1
1
.
IN

T
E
R
A
C
T
IV
E
A
N
D
W
E
B
A
P
P
L
IC
A
T
IO
N
S

Table 11.4: Comparison of the three approaches for GUI generation in R introduced in this chapter.

Mechanics Strengths Weaknesses

tcltk
Package provides binding for

Tcl/Tk GUI building tools.

1) Direct interfacing with R

2) Excellent GUI reactivity

3) Wide range of widgets

1) Limited to R environment

2) GUIs may have poor aesthetics

3) Awkward coding frameworks

4) Poor support online or otherwise

plotly

Package provides language

interfacing from R to JSON

to HTML.

1) After generation, does not require R

2) Some built-in ggplot compatibility

1) GUI capabilities limited

to plot interactives

shiny

Language interfacing from R

to JSON to HTML. Maintains

connection to R environment

1) Good support online and

otherwise.

2) High level of RStudio compatibility.

3) Potentially aesthetic GUIs.

4) Straightforward coding

5) Wide range of widgets

1) Requires direct connection to an

R session, or server connection

to an R environment

2) Potentially poor reactivity

11.6. COMPARISON OF GUI-GENERATING APPROACHES 379

Exercises

1. Make a tcltk GUI that solves and reports the solutions to differential equations.

2. Make a plotly graph of any gglot2 graph using ggplotly.

3. Make a shiny app to greet someone. Hint: place the two code chunks below in the ui
and the server function, respectively.

textInput("name", "What's your name?")

output$greeting <- renderText({paste0("Hello ", input$name)})

Make the app interactive inside an RMarkdown rendered document.

Along with the code, include a snapshot of the app in action.

4. Your friend has designed an app that solves the exponential growth function for a population

with an initial population size of 10, and an intrinsic growth rate of 2, for times, 𝑡, from 1 to 50:

𝑓(𝑡) = 10 × exp(2 × 𝑡).

ui <- fluidPage(
sliderInput("t", label = "If t is", min = 1, max = 50, value = 30),
"then the population size is",
textOutput("exp.growth")

)
server <- function(input, output, session) {

output$exp.growth <- renderText({10 * exp(2 * t)})
}
shinyApp(ui, server)

Does the function generate an error? Why?

Fix the code and provide a snapshot of the app in action.

380 CHAPTER 11. INTERACTIVE ANDWEB APPLICATIONS

Chapter 12

R and Your Computer

“Those who can imagine anything, can create the impossible.”

- Alan Turing, (1912–1954)

12.1 How Do Computers Work?

To better understandRwe need to understand the underlying constraints of computer systems

we use to run R. Computers accept data, process data, produce output, and store processed

results. This is generally accomplished through through the generation, integration and storage

of electrical signals at microscopic scales. A list of (current but often changing) computer

hardware terms are given below.

• Power supply: Converts alternating current (AC) electric power to low-voltage direct

current (DC) power.

• Motherboard: A circuit board connecting computer components including the CPU, RAM

and memory disk drives.

• Central Processing Unit (CPU): A microprocessor that performs most of the calculations

that allow a computer to function. Specifically, the CPU processes program instruc-

tions and sends the results on for further processing and execution by other computer

components.

• Graphics Processing Unit (GPU): An electronic circuit originally designed to accelerate

computer graphics, but now widely applied for non-graphic, but highly parallel, calcula-

tions.

• Chipset: Mediates communication between the CPU and the other computer components.

• Random Access Memory (RAM): Stores code and data in primary memory to allow it

to be directly accessed by the CPU. RAM is volatile memory which requires power to

retain stored information. Thus, when power is interrupted, RAM data can be lost. RAM

types include dynamic random access memory (DRAM) and static random-access memory

381

382 CHAPTER 12. R AND YOUR COMPUTER

(SRAM). DRAM constitutes modern computermain memory and graphics cards. DRAM

typically takes the form of an integrated circuit chip that can consist of up to billions of

memory cells, with each cell consisting of a pairing of a tiny capacitor1 and transistor2,

allowing each cell to store or read or write one bit of information (Fig 12.1). SRAM uses

latching circuitry that holds data permanently in the presence of power, whereas DRAM

decays in seconds and must be periodically refreshed. Memory access via SRAM is much

faster than DRAM, although DRAM circuits are much less expensive to construct.

Figure 12.1: Sixteen DRAMmemory cells each representing a bit of information for computa-

tional storage, reading, or writing. To read the binary word line 0101... in row two of the

circuit, binary signals are sent down the bit lines to sense amplifiers.

• Disk drives: including CD, DVD, hard disk (HDD), and solid state disk (SSD) are used for sec-

ondary memory. That is, memory that is not directly accessible from the CPU. Secondary

memory can be accessed or retrieved even if the computer is off. Secondary memory is

1A capacitor stores electrical energy by “accumulating electric charges on two closely spaced surfaces that are

insulated from each other” (Wikipedia, 2024a).
2A transistor is a semiconductor device (a material with an intermediate electrical conductivity, e.g., silicon)

that is used to amplify or switch electrical signals and power” (Wikipedia, 2024i).

12.2. BASE-2 AND BASE-10 383

also non-volatile and thus can be used to store data and programs for extended periods.

User files and software (like R) are generally stored on HDDs or SSDs. Flash memory,

which uses modifiedmetal–oxide–semiconductor field-effect transistors (MOSFETs), is

typically used on USB and SSD devices to provide secondary memory that can be erased

and reprogrammed. Flash memory can also be used in RAM applications.

• Read-Only Memory (ROM): Stores the BIOS (see below) that runs when the computer is

powered on (cold boot) or restarted (warm boot or reboot). ROM constitutes primary

memory.

• Basic Input Output System (BIOS): Basic boot (startup) and powermanagement firmware

(software that provides low level control for computer hardware). Newer motherboards

use the so-calledUnified Extensible Firmware Interface (UEFI) to address BIOS limitations,

including restrictive 16 bit addresses.

• Video card: Processes computer graphics.

12.2 Base-2 and Base-10

To understand computer processes, it is important to distinguish base-2 (binary) and base-10

(decimal) numerical systems. In both cases, the base refers to the number of unique digits.

Thus, base-2 systems can have two unique digits, commonly 0 and 1, and the base-10 system

has 10 unique digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. The latter –more widely used system– probably

arose because we have ten fingers for counting3. A radix (commonly a decimal symbol) is

used to distinguish the integer part of a number from its fractional part (Fig 12.2). The radix

convention is used by both base-2 and base-10 systems. For example, the decimal number 43
4 ,

has integer component 4 and fractional component 3
4 , can be expressed as 4.75. The binary

equivalent of 43
4 is 100.110.

Traditionally, a base-10 number could only be expressed as a rational fraction whose denomi-

nator was a power of ten (Fig 12.2). However, the decimal system can be extended to any real

number, by allowing a conceptual infinite sequence of digits following the radix (Wikipedia,

2024c).

3A base-20 system used by Pre-Columbian Mesoamerican cultures probably arose because we have twenty

fingers and toes (Wikipedia, 2024c).

384 CHAPTER 12. R AND YOUR COMPUTER

Figure 12.2: A decimal place value chart. A radix (decimal) is placed between the ones and

thenths columns to distinguish decimal number components greater than one (to the left),

and components less than one but greater than zero (to the right).

12.3 Bits and Bytes

Computers are designed around bits and bytes. A bit is a binary (base-2) unit of digital

information. Specifically, a bit will represent a 0 or a 1. This convention occurs because

computer systems typically use electronic circuits that exist in only one of two states, on or off.

For instance, in DRAMmemory cells (Fig 12.1) convert electrical low and high voltages into

binary 0 and 1 responses, respectively, for the purpose of reading, writing, and storing data.

Although bits are used by all software in all conventional computer operating systems, these

mechanisms are easily revealed in R4.

Bits are generally counted in units of bytes. For somewhat arbitrary historical reasons, a

byte equals eight bits. Two major systems exist for counting bytes. The decimal method, the

most common system, uses powers of 10, allowing implementation of SI prefixes (i.e., kilo

= 103 = 1000, mega = 106 = 10002, giga = 109 = 10003, etc.) (Table 12.1). A computer hard

drive with 1 gigabyte (1 billion bytes) of memory will have 1 × 109 bytes = 8 × 109 bits of
memory. The binary system, used frequently by Windows to describe RAM, defines byte units

in multiples of 1024.

With a single bit we can describe only 21 = 2 distinct digital objects. These will be an entity

represented by a 0, and an entity represented by a 1. It follows that 22 = 4 distinct objects can
be described with two bits, 23 = 8 entities can be described with three bits, and so on5.

4Non-binary operating systems are rarely implemented because: 1) they are less efficient, and 2) currently

no IEEE standards have been specified. In order of increasing precision and decreasing efficiency, alternative

systems include: Limited-Precision Decimal, Arbitrary-Precision Decimal, and Symbolic Calculation systems.
5For instance, images often contain eight bit (one byte) variables describing the colors red, green, and blue.

Thus, the color red would be a number between 0 and 255 (i.e., red could have 28 = 256 distinct values).

Given that the colors blue and green were also eight bit, there would be 2563 = 16, 777, 216 color possibilities

(combinations) for any pixel in an image.

12.4. DECIMAL TO BINARY 385

Table 12.1: Frequently used byte units.

Decimal Binary

Bytes Name Bytes Name (IEC)

1000 kB (kilobyte) 1024 KiB (kibibyte)

10002 MB (megabyte) 10242 MiB (mebibyte)

10003 GB (gigabyte) 10243 GiB (gibibyte)

10004 TB (terabyte) 10244 TiB (tebibyte)

10005 PB (petabyte) 10245 PeB (pebibyte)

12.4 Decimal to Binary

We count to ten in binary using: 0 = 0, 1 = 1, 10 = 2, 11 = 3, 100 = 4, 101 = 5, 110 = 6, 111 = 7,

1000 = 8, 1001 = 9, and 1010 = 10. Thus, we require four bits to count to ten. Note that the

binary sequences for all positive integers greater than or equal to one, start with one.

12.4.1 Positive Integers

We can obtain the binary expression of the integer part of any decimal number by iteratively

performing integer division by two, and cataloging eachmodulus. The iterations are stopped

when a quotient of one is reached. Themodulus sequence is read from right to left (backwards).

If the whole number of interest is greater than one (i.e., the whole number is not 0 or 1) we

place a one in front of the reversed sequence, because all binary sequences for numbers greater

than or equal to one must start with one.

Example 12.1.

Consider the number 23:

Modulus (remainder) 1 1 1 0
Integer Quotient 23/2 = 11 11/2 = 5 5/2 = 2 2/2 = 1

The reversed sequence is 0111. We place a one in front to get the binary representation for 23:

10111. The function dec2bin() from asbio does the work for us:

library(asbio)
dec2bin(23)

[1] 10111

�

386 CHAPTER 12. R AND YOUR COMPUTER

12.4.2 Positive Fractions

The fractional part of a decimal number can be converted to binary in a similar fashion.

• To identify the fractional expression as a non integer, start the binary sequence with 0.
(a zero followed by a decimal symbol).

• Double the fraction to be converted, and record a 1 if the product is≥ 1, and 0 otherwise.

• For subsequent binary digits, multiply two by the fractional part of the previous multi-

plication. If the product is≥ 1, record a 1. If not, record a 0.

Example 12.2.

Consider the fraction 1
4 . We have:

Binary outcome 0 1 0 0
Product 1/4 × 2 = 1/2 < 1 1/2 × 2 = 1 ≥ 1 0 × 2 = 0 < 1 0 × 2 = 0 < 1

�

We have a clear repeating sequence of zeroes, due to a product of two in the second step. This

allows us to stop the growth of the binary expression. For fractions, the binary sequence is

read conventionally, from left to right. Thus, the binary expression for 1
4 is 0.01 .

dec2bin(0.25)

[1] 0.01

12.5 Binary to Decimal

The addition of a binary digit (i.e., a bit) represents a doubling of information storage. For in-

stance, as we increase from two bits to three bits, the number of describable integers increases

from four (integers 0 to 3) to eight (integers 0 to 7). As a result we say that the rightmost digit

in a set of binary digits represents 20, the next represents 21, then 22, and so on. This can be

defined with an equation based on Horner’s method (Horner, 1815) that allows conversion of

binary to decimal numbers:

max(𝜅)

∑
𝜅=min(𝜅)

𝛼𝛽𝜅 (12.1)

where 𝛼 is a quantity known as the significand, that contains bit (0, 1) outcomes. For the

purpose of binary expressions, the modifying base, 𝛽, is 2. The term 𝜅 is called (appropriately)

the exponent.

Themaximumandminimumvalues of𝜅 are determined by counting the number of placeholder

digits in the binary expression represented by the significand, with respect to a binary radix

12.5. BINARY TO DECIMAL 387

point (Fig 12.3). Note that counting starts with respect to 0 (the first digit to the left of the

radix) for both positive (bits to the left of the radix) and negative (bits to the right of the radix)

values of the exponent, 𝜅. The radix reference has prompted this method to be called floating

point arithmetic.

Figure 12.3: Conceptualization of binary to decimal conversion, as given in Eq 12.1.

12.5.1 Positive Integers

For positive integers the entirety of the corresponding binomial expression will be to the left

of the radix point (Fig 12.3). Thus, the minimum value of 𝜅 will be zero and the maximum

value of 𝜅will be the number of digits (bits) in the binary expression, minus one.

Equation (12.1) represents a dot product. That is, the equation is a sum of the element-wise

multiplication of two vectors. For instance, to find the integers represented by a single binary

bit, we multiply the binary digit value, 0 or 1, by the power of two it represents. Because the
single bit signature would occur at the right-most address to the left of the radix, the value of

exponent would be 0 (Fig 12.3). That is,min(𝜅) =max(𝜅) = 0 in Eq. (12.1).\

If the single bit equals 0we have:

0 × 20 = 0,

and if the single bit equals 1we have:

1 × 20 = 1.

Accordingly, to find the decimal version of a set of binary values, we take the sum of the

products of the binary digits and their corresponding (decreasing) powers of base 2.

Example 12.3.

For example, the binary number 010101 equals:

388 CHAPTER 12. R AND YOUR COMPUTER

(0 × 25) + (1 × 24) + (0 × 23) + (1 × 22) + (0 × 21) + (1 × 20) = 0 + 16 + 0 + 4 + 0 + 1
= 21.

The function bin2dec in asbio does the calculation for us.

bin2dec(010101)

[1] 21

�

12.5.2 Positive Fractions

For positive fractions, values of the 𝜅 exponent will decrease by minus one as bits increase

by one (Fig 12.3). Thus, to obtain decimal fractions from binary fractions we multiply a bit’s

binary value by decreasing negative powers of base two, starting at 0, and find the sum, as

shown in Eq (12.1).

Example 12.4.

For example, the binary value 0.01 equals:

(0 × 20) + (0 × 2−1) + (1 × 2−2) = 0.25

bin2dec(0.01)

[1] 0.25

�

12.5.2.1 Terminality

Most decimal fractions will not have a clear terminal binary sequence. That is, a binary

representation of a decimal fraction with a finite number of digits will not exist. This results in

mere binary approximations of decimal numbers (Goldberg, 1991). For instance, the 10 bit

binary expression of 1
10 is

dec2bin(0.1)

[1] 0.0001100110

But translating this back to decimal we find:

12.5. BINARY TO DECIMAL 389

bin2dec(0.0001100110)

[1] 0.0996

Increasing the number of bits in the binary expression increases precision,

dec2bin(0.1, max.bits = 14)

[1] 0.00011001100110

but the decimal approximation remains imperfect.

options(digits = 20)
bin2dec(0.00011001100110)

[1] 0.10000000000000000555

Note that the imperfect conversion above gives the actual result of the division 1
10 for all

software on all current conventional computers (not just R)!

options(digits = 20)
1/10

[1] 0.10000000000000000555

It may seem surprising that rational fractions like 1
10 may have non-terminating binary expres-

sions. Terminality, however, will only occur for a decimal fraction if a product of 2 results from

the successive multiplication steps described in Section 12.4.2. This product does not occur

for 1
10 .

Lack of terminality for binary expressions prompts the need for quantifying imprecision in

computers systems. This can be obtained from Eq (12.1). In particular, the exponent in Eq

(12.1) determines minimum and maximum possible encoded numeric values, and the number

of digits in the significand determines numeric precision. Indeed, by changing the base from 2

to 10, Eq (12.1) can be used to quantify the precision of binary and decimal numbers.

Example 12.5.

For instance, the decimal number 1, 245.42 has the scientific notation: 1.24542 × 103. The
expression has a the precision of six digits, because under Eq (12.1) the significand has six

digits. Note that applying these digits in Eq. (12.1) we have:

1 × 103+ 2 × 102+ 4 × 101+ 5 × 100+ 4 × 10−1+ 2 × 10−2 =
1000+ 200+ 40+ 5+ 0.4+ 0.02 = 1245.42

�

390 CHAPTER 12. R AND YOUR COMPUTER

12.6 Double Precision

In most programs, on most workstations, the results of computations are stored as 32 bits

(i.e., 4 bytes) or as 64 bits (8 bytes) of information. The 64 bit double precision format allows

high precision representations of both positive and negative integers and their fractional

components. Under this framework, one bit is allocated to the sign of the stored item, 53 bits

are assigned to the significand, and 11 bits are given to the exponent (Fig 12.4).

Figure 12.4: The IEEE 754 double-precision binary floating-point format Figure taken from

https://commons.wikimedia.org/w/index.php?curid=3595583.

This can be represented mathematically as a more complex form of Eq (12.1):

(−1)sign (1 +
52
∑
𝑖=1

𝑏52−𝑖2−𝑖)× 2𝑒−1023 (12.2)

which gives the assumed numeric value for a 64-bit double-precision datum with exponent

bias.\

Example 12.6.

The function bit64() below is taken from the Examples of the documentation for the base

function numToBits(), which converts digital numbers to 64 bits. The function distinguishes:

• The single bit giving the sign of the number (0 = positive, 1 = negative).

• The 11 bit exponent.

• A 52 bit significand (without the implicit leading 1).

bit64 <- function(x)
noquote(vapply(as.double(x),

function(x) {
b <- substr(as.character(rev(numToBits(x))), 2L, 2L)
paste0(c(b[1L], " ", b[2:12], " | ", b[13:64]), collapse = "")
}, "")

)

Here is the double precision representation of 1
3

https://commons.wikimedia.org/w/index.php?curid=3595583

12.6. DOUBLE PRECISION 391

bit64(1/3)

[1] 0 01111111101 | 01

We see this follows the form of Eq (12.2). The exponent 01111111101 represents the decimal

number 1021:

bin2dec(01111111101)

[1] 1021

And one plus the dot product of the significand and base-2 raised to the sequence -1 to -52,

multiplied by 21021−1023, is:

sigd <- strsplit("01", NULL)
sigd <- as.numeric(unlist(sigd))
base2 <- 2^(-1:-52)
(1 + sum(sigd * base2)) * 2^-2

[1] 0.3333

That is, we have:

𝑣𝑎𝑙𝑢𝑒 = (−1)sign (1 +
52
∑
𝑖=1

𝑏52−𝑖2−𝑖)× 2𝑒−1023

= −10 × (1 + 2−2 + 2−4 +⋯+ 2−52) × 21021−1023

≈ 1.33 ̄3 × 2−2

≈ 1
3

�

The 11 bit width of the double precision exponent allows the expression of numbers between

10−308 and 10308, with full 15–17 decimal digits precision. This is clearly demonstrated in R.

Specifically, imprecision problems with non-terminal fractions become evident for decimal

numbers with greater than 16 displayed digital digits.

options(digits = 18)
1/3

[1] 0.333333333333333315

Additionally, the current upper numerical limit in R (ver 4.3.2) is somewhere between:

1.8 * 10^307

[1] 1.8e+307

392 CHAPTER 12. R AND YOUR COMPUTER

and

1.8 * 10^308

[1] Inf

The subnormal representation6 compromises precision, but allows allows fractional repre-

sentations approaching 5 × 10−324. This approach is used by R, whose smallest represented

fraction is between:

5.0 * 10^-323

[1] 4.94065645841246544e-323

and

5.0 * 10^-324

[1] 0

Binary fractional numbers are expressedwith respect to a decimal, and thenumber of digitswill

(often) be dictated by the significand. Given 13 bits we have the following binary translations

to decimal numbers: 1 = 1/1, 0.1 = 1/2, 0.01010101… = 1/3, 0.01 = 1/4, 0.00110011 = 1/5,

0.0010101… = 1/6, 0.001001… = 1/7, 0.001 = 1/8, 0.000111000111… = 1/9, 0.000110011…
= 1/10.

12.7 Binary Characters

Characters can also be expressed in binary. The American Standard Code for Information

Interchange (ASCII) consists of 128 characters, and requires one byte = eight bits7. The newer

eight bit Unicode Transformation Format (UTF-8) system –the most widely used Unicode

system– can represent 1,112,064 valid code points, using between 1 to 4 bytes = 8 to 32 bits

(Wikipedia, 2024k). Specifically, from the perspective of the UTF-16 system, the UTF-8 system

uses portions of seventeen planes^[In Unicode, a plane is a group of 216 = 65, 536 code points.
There are 17 planes because UTF-16, can encode 220 code points (16 planes) as pairs of words,
plus the so-called Basic Multilingual Plane (UTF-16 plane 0) as a single word.}, each consisting

of sixteen bits (and, thus, 216 = 65, 536 code variants). This results in the quantity:

(17 × 216) − 211 = 1, 112, 064

6*Subnormal numbers* fill the underflow gap around zero in floating-point arithmetic [@wikisubnormal].

For subnormal numbers, 𝑒 in Eq:

eqrefeq:dp is taken to be zero. *Underflow* occurs when the result of a calculation is a number with greater

precision than the computer can actually represent in its CPU memory [@wikiunderflow].
7Originally developed from telegraph code, ASCII has only 128 code points, of which only 95 are printable

characters (Wikipedia, 2023a).

https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/UTF-16#U+D800_to_U+DFFF

12.8. OPTIMIZING R 393

The 211 = 2048 subtraction acknowledges that there are 2048 technically-invalid Unicode sur-

rogates (Wikipedia, 2024j). The first 128 UTF-8 characters are the ASCII characters, allowing

back-comparability with ASCII.

Example 12.7.

R uses the UTF-8 system of characters. We can observe the process of binary character

assignment using the functions as.raw(), rawToChar(), and rawToBits(). Here is a list of
the 128 ASCII characters.

rawToChar(as.raw(1:128), multiple = TRUE)

[1] "\001" "\002" "\003" "\004" "\005" "\006" "\a" "\b" "\t" "\n"
[11] "\v" "\f" "\r" "\016" "\017" "\020" "\021" "\022" "\023" "\024"
[21] "\025" "\026" "\027" "\030" "\031" "\032" "\033" "\034" "\035" "\036"
[31] "\037" " " "!" "\"" "#" "$" "%" "&" "'" "("
[41] ")" "*" "+" "," "-" "." "/" "0" "1" "2"
[51] "3" "4" "5" "6" "7" "8" "9" ":" ";" "<"
[61] "=" ">" "?" "@" "A" "B" "C" "D" "E" "F"
[71] "G" "H" "I" "J" "K" "L" "M" "N" "O" "P"
[81] "Q" "R" "S" "T" "U" "V" "W" "X" "Y" "Z"
[91] "[" "\\" "]" "^" "_" "`" "a" "b" "c" "d"
[101] "e" "f" "g" "h" "i" "j" "k" "l" "m" "n"
[111] "o" "p" "q" "r" "s" "t" "u" "v" "w" "x"
[121] "y" "z" "{" "|" "}" "~" "\177" "\200"

Note that the exclamation point is character number 33. Its 16 bit binary code is:

rawToBits(as.raw(33))

[1] 01 00 00 00 00 01 00 00

From the output above, codes 1-31 and 127-128 are not printable characters. Thus, there are

only 128 - 33 = 95 printable ASCII characters. Note that codes 7-13 are command characters.

For instance, character 10, "\n" indicates “make a new line’ ’ within a character string.

�

12.8 Optimizing R

Because attention was given to computational efficiency in several earlier sections in this

chapter, here I briefly consider several methods for optimizing R. In particular, I consider

the use of R-interfaces, including scripting from command line OS shells to implement high

performance computers (HPCs) and parallel computing.

394 CHAPTER 12. R AND YOUR COMPUTER

12.8.1 Calling Linux-driven HPCs

Under construction

12.8.2 Parallel Computing

Under construction

Exercises

1. Define the following terms:

(a) Motherboard

(b) Central processing unit (CPU)

(c) Random access memory

(d) Primary memory

(e) Secondary memory

(f) Volatile memory

(g) Non-volatile memory

2. What is the level of trustworthy precision (in number of digits) for decimal fractional

components in R (and all software that use 64 bit double precision)?

3. Obtain the five bit binary sequence for the number 21 by hand. Check your answer using

dec2bin().

4. Find the decimal number corresponding to the five bit binary sequence 11111. Check
your answer using bin2dec().

5. Find the 64 bit expression for the decimal number −2 (minus 2) using the function

bit64(), as shown in this chapter. Back-transform this binary representation to the

decimal number by hand using Eq. (12.2). Use R functions like strsplit() unlist(),
etc., to help.

Bibliography

Adler, J. (2010). R in a nutshell: A desktop quick reference. ” O’Reilly Media, Inc.”.

Aho, K. (2014). Foundational and Applied Statistics for Biologists Using R. CRC Press.

Aho, K. (2023). asbio: A Collection of Statistical Tools for Biologists. R package version 1.9-6.

Aho, K., Derryberry, D., Godsey, S. E., Ramos, R., Warix, S. R., and Zipper, S. (2023a). Communi-

cation distance and bayesian inference in non-perennial streams. Water Resources Research,

59(11):e2023WR034513.

Aho, K., Kriloff, C., Godsey, S. E., Ramos, R., Wheeler, C., You, Y., Warix, S., Derryberry, D., Zipper,

S., Hale, R. L., et al. (2023b). Non-perennial stream networks as directed acyclic graphs: The

R-package streamdag. Environmental Modelling & Software, 167:105775.

Allaire, J., Xie, Y., Dervieux, C., McPherson, J., Luraschi, J., Ushey, K., Atkins, A., Wickham, H.,

Cheng, J., Chang, W., and Iannone, R. (2024). rmarkdown: Dynamic Documents for R. R

package version 2.28.

Anderson, E., Bai, Z., Bischof, C., Blackford, L. S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum,

A., Hammarling, S., McKenney, A., et al. (1999). LAPACK users’ guide. SIAM.

Backus, J. (1998). The history of Fortran i, ii, and iii. EEE Annals of the History of Computing,

20:68–78.

Bates, D., Mächler, M., Bolker, B., and Walker, S. (2015). Fitting linear mixed-effects models

using lme4. Journal of Statistical Software, 67(1):1–48.

Bates, D., Maechler, M., and Jagan, M. (2023). Matrix: Sparse and Dense Matrix Classes and

Methods. R package version 1.5-4.1.

Becker, R. and Chambers, J. (1978). Design and implementation of the ’S’ system for interactive

data analysis. In The IEEE Computer Society’s Second International Computer Software and

Applications Conference, 1978. COMPSAC’78., pages 626–629. IEEE.

Becker, R. and Chambers, J. (1981). S: a language and system for data analysis, Bell Laboratories

computer information service. Murray Hill, New Jersey.

Becker, R., Chambers, J., and Wilks, A. (1988). The New S language. CRC Press.

Becker, R. A., Cleveland, W. S., and Shyu, M.-J. (1996). The visual design and control of trellis

display. Journal of Computational and Graphical Statistics, pages 123–155.

395

396 BIBLIOGRAPHY

Bell, E. T. (1938). The iterated exponential integers. Annals of Mathematics, 39(3):539–557.

Bell Labs (2004). The creation of the UNIX operating system. [Online; accessed 8-July-2024].

Bengtsson, H. (2022). R.matlab: Read and Write MAT Files and Call MATLAB fromWithin R. R

package version 3.7.0.

Bivand, R. S., Pebesma, E., and Gómez-Rubio, V. (2013). Applied Spatial Data Analysis with R,

Second edition. Springer, NY.

Bonnin, S. (2021). Intermediate R: introduction to data wrangling with the Tidyverse (2021).

GitHub bookdown document.

Boutin, P., Hailpern, B., Proebsting, T., and Wiederhold, G. (2002). Mother tongues - tracing the

roots of computer languages through the ages. Wired.

Breslow, N. E. and Day, N. (1980). Statistical methods in cancer research. Vol. 1. The analysis of

case-control studies., volume 1. IARC Publications.

Brinkmann, R. (2009). Dire Predictions: Understanding Global Warming. The Illustrated Guide

to the Findings of the Intergovernment Panel on Climate Change. JSTOR.

Butcher, J. C. (1987). The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta

and General Linear Methods. Wiley-Interscience.

Canty, A. and Ripley, B. D. (2022). boot: Bootstrap R (S-Plus) Functions. R package version

1.3-28.1.

Chambers, J. M. (1999). Computing with data: Concepts and challenges. The American

Statistician, 53(1):73–84.

Chambers, J. M. (2008). Software for data analysis: programming with R, volume 2. Springer.

Chambers, J. M. (2020). S, R, and Data Science. The R Journal, 12(1):462–476.

Chambers, J. M. and Hastie, T. J. (1992). Statistical models. In Statistical models in S, pages

13–44. Routledge.

Cooley, J. W. and Tukey, J. W. (1965). An algorithm for the machine calculation of complex

fourier series. Mathematics of computation, 19(90):297–301.

Corbató, F. J. and Vyssotsky, V. A. (1965). Introduction and overview of the multics system.

In Proceedings of the November 30–December 1, 1965, fall joint computer conference, part I,

pages 185–196.

Crampton, E. et al. (1947). The growth of the odontoblasts of the incisor tooth as a criterion of

the vitamin c intake of the guinea pig. Journal of Nutrition, 33:491–504.

Crawley, M. J. (2012). The R Book. John Wiley & Sons.

Dalgaard, P. (2001). A primer on the r-tcl/tk package. R News, 1(3):27–31.

Dalgaard, P. (2002). Changes to the r-tcl/tk package. R News, 2(3):25–27.

BIBLIOGRAPHY 397

Eddelbuettel, D. (2013). Seamless R and C++ Integration with Rcpp. Springer, New York. ISBN

978-1-4614-6867-7.

Eddelbuettel, D. and Balamuta, J. J. (2018). Extending R with C++: A Brief Introduction to Rcpp.

The American Statistician, 72(1):28–36.

Eddelbuettel, D., Francois, R., Allaire, J., Ushey, K., Kou, Q., Russell, N., Ucar, I., Bates, D., and

Chambers, J. (2023a). Rcpp: Seamless R and C++ Integration. R package version 1.0.11.

Eddelbuettel, D., Francois, R., and Bachmeier, L. (2023b). RInside: C++ Classes to Embed R in

C++ (and C) Applications. R package version 0.2.18.

Faraway, J. J. (2004). Linear Models with R. Chapman and Hall/CRC.

Faraway, J. J. (2016). Extending the Linear Model with R: Generalized Linear, Mixed Effects and

Nonparametric Regression Models. CRC press.

Fisher, R. A. and Mackenzie, W. A. (1923). Studies in crop variation. ii. the manurial response

of different potato varieties. The Journal of Agricultural Science, 13(3):311–320.

Fox, J. (2005). The R Commander: A basic statistics graphical user interface to R. Journal of

Statistical Software, 14(9):1–42.

Fox, J. (2007). Extending the R commander by “plug-in” packages. R news, 7(3):46–52.

Fox, J. (2009). Aspects of the social organization and trajectory of the R project. R J., 1(2):5.

Fox, J., Marquez, M. M., and Bouchet-Valat, M. (2023). Rcmdr: R Commander. R package version

2.9-1.

Fox, J. and Weisberg, S. (2019). An R Companion to Applied Regression. Sage, Thousand Oaks

CA, third edition.

Gagolewski, M. (2022). stringi: Fast and portable character string processing in R. Journal of

Statistical Software, 103(2):1–59.

Geyer, C. J. (1991). Constrained maximum likelihood exemplified by isotonic convex logistic

regression. Journal of the American Statistical Association, pages 717–724.

Goldberg, D. (1991). What every computer scientist should know about floating-point arith-

metic. ACM computing surveys (CSUR), 23(1):5–48.

Grosjean, P. (2024). SciViews-R. UMONS, MONS, Belgium.

Hershey, A. V. (1967). Calligraphy for computers, volume 2101. US Naval Weapons Laboratory.

Hodgkin, A. L. and Huxley, A. F. (1952). A quantitative description of membrane current and

its application to conduction and excitation in nerve. The Journal of Physiology, 117(4):500.

Hoffmann, T. J. and Laird, N. M. (2009). fgui: A method for automatically creating graphical

user interfaces for command-line R packages. Journal of Statistical Software, 30(2):1–14.

398 BIBLIOGRAPHY

Horner, W. (1815). A new method of solving numerical equations of all orders, by continuous

approximation. In Abstracts of the Papers Printed in the Philosophical Transactions of the

Royal Society of London, volume 2, pages 117–117. JSTOR.

Hornik, K. and the R Core Team (2023). R FAQ.

Hothorn, T., Hornik, K., van de Wiel, M. A., and Zeileis, A. (2006). A Lego system for conditional

inference. The American Statistician, 60(3):257–263.

Hothorn, T., Hornik, K., van de Wiel, M. A., and Zeileis, A. (2008). Implementing a class of

permutation tests: The coin package. Journal of Statistical Software, 28(8):1–23.

Ihaka, R. (1998). R: Past and future history. Computing Science and Statistics, 392396.

Ihaka, R. and Gentleman, R. (1996). R: a language for data analysis and graphics. Journal of

Computational and Graphical Statistics, 5(3):299–314.

Kassambara, A. (2023). ggpubr: ’ggplot2’ Based Publication Ready Plots. R package version

0.6.0.

Kernighan, B. W. and Ritchie, D. M. (2002). The C programming language. Pearson Education

Asia.

Lawrence, M. and Verzani, J. (2018). Programming graphical user interfaces in R. Chapman

and Hall/CRC.

Lemon, J. (2006). Plotrix: a package in the red light district of r. R-News, 6(4):8–12.

Lin, G. (2023). reactable: Interactive Data Tables for R. R package version 0.4.4.

Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., and Hornik, K. (2022). cluster: Cluster Analy-

sis Basics and Extensions. R package version 2.1.4 — For new features, see the ’Changelog’

file (in the package source).

Magurran, A. E. (1988). Ecological Diversity and its Measurement. Princeton University Press.

Matsumoto, M. and Nishimura, T. (1998). Mersenne twister: a 623-dimensionally equidis-

tributed uniform pseudo-random number generator. ACM Transactions on Modeling and

Computer Simulation (TOMACS), 8(1):3–30.

McCarthy, J. (1978). History of lisp. In History of Programming Languages, pages 173–185.

Stanford University.

McIntosh, R. P. (1967). An index of diversity and the relation of certain concepts to diversity.

Ecology, 48(3):392–404.

Morandat, F., Hill, B., Osvald, L., and Vitek, J. (2012). Evaluating the design of the R language:

Objects and functions for data analysis. In ECOOP 2012–Object-Oriented Programming:

26th European Conference, Beijing, China, June 11-16, 2012. Proceedings 26, pages 104–131.

Springer.

Murrell, P. (2019). R graphics, 3rd edition. Chapman and Hall/CRC.

BIBLIOGRAPHY 399

Oksanen, J., Simpson, G. L., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R.,

Solymos, P., Stevens, M. H. H., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B.,

Borcard, D., Carvalho, G., Chirico, M., De Caceres, M., Durand, S., Evangelista, H. B. A., FitzJohn,

R., Friendly, M., Furneaux, B., Hannigan, G., Hill, M. O., Lahti, L., McGlinn, D., Ouellette, M.-H.,

Ribeiro Cunha, E., Smith, T., Stier, A., Ter Braak, C. J., andWeedon, J. (2022). vegan: Community

Ecology Package. R package version 2.6-4.

Ousterhout, J. K. (1991). An x11 toolkit based on the tcl language. In USENIX Winter, pages

105–116. Citeseer.

Pebesma, E. and Bivand, R. S. (2023). Spatial Data Science With Applications in R. Chapman &

Hall.

Pine, D. J. (2019). Introduction to Python for science and engineering. CRC press.

Pinheiro, J. C. and Bates, D. M. (2000). Mixed-Effects Models in S and S-PLUS. Springer, New

York.

R Core Team (2023). R: A Language and Environment for Statistical Computing. R Foundation

for Statistical Computing, Vienna, Austria.

R Core Team (2024a). R internals.

R Core Team (2024b). R language definition.

R Core Team (2024c). Writing R Extensions.

Ritchie, D. M. (1984). The unix system: The evolution of the unix time-sharing system. AT&T

Bell Laboratories Technical Journal, 63(8):1577–1593.

Ritchie, D. M. (1993). The development of the c language. ACM Sigplan Notices, 28(3):201–208.

Rubino, M., Etheridge, D., Trudinger, C., Allison, C., Battle, M., Langenfelds, R., Steele, L., Curran,

M., Bender, M., White, J., et al. (2013). A revised 1000 year atmospheric 𝛿13c-co2 record

from law dome and south pole, antarctica. Journal of Geophysical Research: Atmospheres,

118(15):8482–8499.

Ryan, M. S. and Nudd, G. R. (1993). The viterbi algorithm. Department of Computer Science

Research Report.

Sarkar, D. (2008). Lattice: Multivariate Data Visualization with R. Springer, New York.

Satman, M. H. (2014). Rcaller: A software library for calling r from java. British Journal of

Mathematics & Computer Science, 4(15):2188.

Schanda, J. (2007). Cie colorimetry. Colorimetry: Understanding the CIE system, 3:25–78.

Schnute, J. T., Couture-Beil, A., and Haigh, R. (2023). PBSmodelling: GUI Tools Made Easy:

Interact with Models and Explore Data. R package version 2.69.3.

Schnute, J. T., Couture-Beil, A., Haigh, R., and Kronlund, A. (2013). Pbsmodelling 2.65: user’s

guide. Canadian Technical Report of Fisheries and Aquatic Sciences, 2674:viii–194.

400 BIBLIOGRAPHY

Schwartz, M., Harrell Jr, F., Rossini, A., and Francis, I. (2008). R: Regulatory compliance and

validation issues a guidance document for the use of R in regulated clinical trial environments.

The R Foundation for Statistical Computing, c/o Department of Statistics and Mathematics,

Wirtschaftsuniversität Wien, Augasse, pages 2–6.

Shannon, C. E. (1948). A mathematical theory of communication. The Bell system technical

journal, 27(3):379–423.

Sievert, C. (2020). Interactive Web-based Data Visualization with R, plotly, and shiny. CRC Press.

Signorell, A. (2023). DescTools: Tools for Descriptive Statistics. R package version 0.99.52.

Steele, Guy Lewis, J. (1978). Rabbit: A compiler for scheme. Master’s thesis, Massachusetts

Institute of Technology.

Sussman, G. J. and Steele Jr, G. L. (1998). Scheme: A interpreter for extended lambda calculus.

Higher-Order and Symbolic Computation, 11(4):405–439.

Thieme, N. (2018). R generation. Significance, 15(4):14–19.

Thompson, K. (1972). Users’ Reference to B. [Online; accessed 7-Sep-2023].

Tierney, L. (2023). codetools: Code Analysis Tools for R. R package version 0.2-19.

Tukey, J. W. et al. (1977). Exploratory data analysis, volume 2. Reading, MA.

Urbanek, S. (2021). rJava: Low-Level R to Java Interface. R package version 1.0-6.

Ushey, K., Allaire, J., and Tang, Y. (2023). reticulate: Interface to ’Python’. R package version

1.31.

Van Rossum, G. and Drake, F. L. (2009). Python 3 Reference Manual. CreateSpace, Scotts Valley,

CA.

Venables, W. N. and Ripley, B. D. (2002). Modern Applied Statistics with S. Springer, New York,

fourth edition edition. ISBN 0-387-95457-0.

Wand, M. (2023). KernSmooth: Functions for Kernel Smoothing Supporting Wand and Jones

(1995). R package version 2.23-21.

Wickham, H. (2010). A layered grammar of graphics. Journal of Computational and Graphical

Statistics, 19(1):3–28.

Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.

Wickham, H. (2019). Advanced R. CRC press.

Wickham, H. (2021). Mastering Shiny. O’Reilly Media, Inc.

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund, G.,

Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. M., Müller, K.,

Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., Takahashi, K., Vaughan, D., Wilke, C., Woo, K., and

Yutani, H. (2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43):1686.

BIBLIOGRAPHY 401

Wickham, H., Çetinkaya-Rundel, M., and Grolemund, G. (2023). R for data science. O’Reilly

Media, Inc.

Wikipedia (2023a). Ascii. [Online; accessed 9-November-2023].

Wikipedia (2023b). Null object. [Online; accessed 14-December-2023].

Wikipedia (2023c). Perl. [Online; accessed 21-December-2023].

Wikipedia (2024a). Capacitor. [Online; accessed 14-February-2024].

Wikipedia (2024b). Cielab color space. [Online; accessed 20-August-2024].

Wikipedia (2024c). Decimal number. [Online; accessed 5-February-2024].

Wikipedia (2024d). Fortran. [Online; accessed 21-October-2024].

Wikipedia (2024e). Language binding. [Online; accessed 19-November-2024].

Wikipedia (2024f). Pseudorandom number generator. [Online; accessed 4-November-2024].

Wikipedia (2024g). S (programming language). [Online; accessed 23-October-2024].

Wikipedia (2024h). String (computer science). [Online; accessed 22-January-2024].

Wikipedia (2024i). Transistor. [Online; accessed 14-February-2024].

Wikipedia (2024j). Utf-16. [Online; accessed 26-March-2024].

Wikipedia (2024k). Utf-8. [Online; accessed 26-March-2024].

Wilkinson, L. (2012). The grammar of graphics. Springer.

Wood, S. (2017). Generalized Additive Models: An Introduction with R. Chapman and Hall/CRC,

2 edition.

Wood, S. N. (2011). Fast stable restricted maximum likelihood and marginal likelihood estima-

tion of semiparametric generalized linear models. Journal of the Royal Statistical Society (B),

73(1):3–36.

Xie, Y. (2013). animation: An r package for creating animations and demonstrating statistical

methods. Journal of Statistical Software, 53:1–27.

Xie, Y. (2015). Dynamic Documents with R and knitr. Chapman and Hall/CRC, Boca Raton,

Florida, 2nd edition. ISBN 978-1498716963.

Xie, Y. (2016). bookdown: Authoring Books and Technical Documents with R Markdown. Chap-

man and Hall/CRC, Boca Raton, Florida.

Xie, Y. (2023). bookdown: Authoring Books and Technical Documents with R Markdown. R

package version 0.34.

Xie, Y. (2024). tinytex: Helper Functions to Install and Maintain TeX Live, and Compile LaTeX

Documents. R package version 0.51.

402 BIBLIOGRAPHY

Xie, Y., Allaire, J. J., and Grolemund, G. (2018a). R markdown: The definitive guide. Chapman

and Hall/CRC.

Xie, Y., Cheng, J., and Tan, X. (2024). DT: A Wrapper of the JavaScript Library ’DataTables’. R

package version 0.33.

Xie, Y., Dervieux, C., and Riederer, E. (2020). R markdown cookbook. CRC Press.

Xie, Y., Mueller, C., Yu, L., and Zhu, W. (2018b). animation: A Gallery of Animations in Statistics

and Utilities to Create Animations. R package version 2.6.

Zelazo, P. R., Zelazo, N. A., and Kolb, S. (1972). “Walking” in the newborn. Science,

176(4032):314–315.

Zhu, H., Travison, T., Tsai, T., Beasley, W., Xie, Y., Yu, G., Laurent, S., Shepherd, R., Sidi, Y., et al.

(2022). kableextra: Construct complex table with “kable” and pipe syntax. 2021. URL

https://CRAN. R-project. org/package= kableExtra. R package version, 1(1):579.

Index of Terms

(, 299

LATEX, 108

API (application programming interface),

329

ASCII, 392

Assembly (programming language), 5

Assignment (programming), 14

B (programming language), 5

Basic input output system (BIOS), 383

Binary (numerical system), 383

Binary method (digital storage system),

384

Binary operation, 269

Binding (software), 329

Bioconductor, 272

Bioconductor (package repository), 75

Bit (unit of digital information), 384

Bitmap, 149

Boolean (logical), 57

Boot (computer startup), 383

Bootstrap (HTML tools), 372

Byte (unit of digital information), 384

Byte Order Mark (BOM), 83

C (programming language), 5, 293, 367

Pointer, 294

Capacitor, 383

Central processing unit (CPU), 383

Character string, 55, 101

Chipset, 383

Command character, 112

\n, 112, 393
\t, 112

Compiled programming language, 292

Compiler, 292

CSS (HTML tools), 372

Cytoscape, 292

Debian control file, 323

Decimal (numerical system), 383

Decimal method (digital storage system),

384

Double precision, 390

exponent bias, 390

Dynamic-link library (DLL), 294

End of file (EOF) signal, 80

ESS, 26

Executable file, 292

Exponent (binary expression equation),

386

Expression (programming), 14

F# (programming language), 120, 269

Floating point arithmetic, 387

Fortran (programming language), 5, 293

Array, 294

Fortran 2003, 293

Function (computer algorithm), 251

wrapper function, 261

Functional programming, 269

Fuzzy matching, 21

General linear model, 211

Generalized Additive Model (GAM), 211

ggproto, 202

Github (package and code repository), 75

Global variable, 256

403

404 INDEX OF TERMS

GNU compiler collection (GCC), 296

Graphical interactivity, 188

Graphics processing unit (GPU), 383

Grid graphics, 197

Grob (graphical object), 237

GUI (Graphical User Interface), 327

geometry management, 332

widget, 327

Haskell (programming language), 37, 269

Hexadecimal, 158

High performance computers (HPCs), 394

HTML, 36, 345

IEEE (Institute of Electrical and Electronics

Engineers), 2, 64, 106, 384

Infix operation, 269

Integrated development environment

(IDE), 24, 26, 34

Interpreted programming language, 292

Intervallic estimator, 32

Java

package

RCaller, 292

plotly.js, 345

Java (programming language), 120, 345

JavaScript (JS) (programming language),

43, 345

package

DataTable, 43

JavaScript Open Notatation (JSON)

(programming language), 345

Julia (programming language), 120

Jupyter notebook, 26, 300

LATEX, 36

Lazy loading, 320

Lexical scoping, 256

Linux/Unix (operating system), 11

Xlib (X11), 329

Lisp (programming language), 5, 269

Local variable, 256

Loop (programming), 194, 241, 242, 264

Lossless, 149

Lossy, 149

LOWESS, 211

Mac (operating system), 11

cocoa, 329

Matrix algebra, 51, 95

Memory

disk drives, 383

primary memory, 383

random access memory (RAM), 383

read-only memory (ROM), 383

secondary memory, 383

Multics, 5

Object oriented programming, 16

Operator associativity, 29

Operator precedence, 29

Parellel computing, 394

Perl (programming language), 106

Pipe, 120

Point estimator

location estimator, 32

sample mean, 32

sample median, 32

order statistic

max, 32

min, 32

scale estimator, 32

sample IQR, 32

sample variance, 32

shape estimator

sample kurtosis, 32

sample skewness, 32

Point estimators, 32

Posit (new RStudio name), 34

Posit package manager (package

repository), 75

POSIX (Portable Operating System

Interface), 296

Pseudo-random number, 12, 312

Python

dictionary, 304

functions/operators

** (exponentiation), 307
*, 303
.append(), 306, 313

INDEX OF TERMS 405

>>>, 300
def(), 308
exp(), 307
for(), 313
if(), 302
import(), 302
list(), 306
matplotlib.pyplot.plot(), 304
numpy.array(), 307
numpy.pi(), 303
numpy.sin(), 303
os.getcwd(), 310
print(), 302
quit(), 300
random.random(), 313
range(), 304
scipy.integrate.def(), 308
scipy.integrate.quad(), 308
sympy.diff(), 308
sympy.symbols(), 308
time.time(), 313
type(), 304

indentation, 302

list, 304

package

NumPy, 302

SciPy, 302

bokeh, 302

matplotlib, 302

pandas, 302

random, 313

rpy2, 292

sympy, 302

time, 313

tkinter, 329, 338

pip, 302

pycharm IDE, 300

Python Toolkit IDE, 300

set, 304

Spyder IDE, 300

standard library, 302

tuple, 304

R

.RData file, 25

.Rdata file, 319

.r file, 26, 320

.rd file, 320

.rda file, 25, 81, 319

.rmd file, 36

.rnw file, 36

NA, 63
NULL, 65
NaN, 64
assignment operator, 14

base type, 17, 50

builtin, 17, 253

character, 17

closure, 17, 253

complex, 17

double, 17

environment, 255

expression, 17, 31

integer, 17

language, 17

list, 17

logical, 17

NULL, 17

pairlist, 17, 254

raw, 17

special, 17, 253

symbol, 17

character vector, 103

class, 16

classes, 16

array, 16, 51, 52

call, 338

complex, 16

data.frame, 16, 53

expression, 31

factor, 16

formula, 93

function, 16, 252

integer, 16

list, 16

matrix, 16, 51

numeric, 16

POSIXct, 114

POSIXlt, 114

try-error, 335

406 INDEX OF TERMS

command line prompt, 11

continuation prompt, 14, 202

CRAN (archive network), 2, 72

DESCRIPTION file, 323

development core team, 3

function

argument, 30

graphics, 139

3D plots, 189, 199

animation, 192, 241

barplots, 175, 224

boxplots, 180, 204

coefficient plot, 350

color palettes, 158

colors, 156

dot plots, 140, 222

frequency plots, 222

histograms, 171, 222

interval plots, 183, 226

line plots, 147, 207

maps, 239

mosaic plots, 141

pie charts, 140

scatterplots, 163, 207

smooth scatter plots, 141

spine plots, 141

stem plots, 140

strip charts, 140

sunflower plots, 141

trellis plots, 197, 236

violin plots, 182

graphics devices, 144

history of, 2

interpreter, 251

introduction to, 1

mathematics, 27

constants, 30

derivatives, 31

integrals, 31

statistics, 32

trigonometry, 30

memory limits on datasets, 84

missing data, 63

NAMESPACE file, 324

object, 14, 16

base types, 17

names, 15

package, 2, 72

RInterface, 372

htmltools, 363

shinymaterial, 372

DT, 43

GGally, 351

KernSmooth, 76

MASS, 76

Matrix, 76

PBSmodelling, 345

PRCE, 111

RColorBrewer, 160, 224

RCytoscape, 292

RInside, 292

Rcmdr, 329

Rcpp, 292

SciViews, 345

animation, 194

asbio, 78, 170, 179, 183, 275, 329

base, 76

blob, 120

bookdown, 43

boot, 76

car, 78, 194

class, 76

cluster, 76

codetools, 76

coin, 78

colorspace, 162

compiler, 76

cowplot, 222

datasets, 76

deSolve, 285

devtools, 265

dplyr, 7, 120, 124

fgui, 345

forcats, 120

foreign, 76

gWidgets2tcltk, 329, 345

gWidgets2, 345

gapminder, 245

gganimate, 243

gginnards, 214

INDEX OF TERMS 407

ggplot2, 7, 78, 120, 139, 189, 202

ggpmisc, 212

ggpubr, 230

ggspatial, 239

gifski, 193

glue, 120

grDevices, 76, 139

graphics, 76, 139

gridGraphics, 197

grid, 76, 139, 197

htmltools, 345

htmlwidgets, 345

kableExtra, 43

knitr, 37, 40

labdsv, 172

lattice, 76, 197

lme4, 78

lubridate, 120, 132

margrittr, 120, 121

methods, 76

mgcv, 76

missForest, 249

nlme, 76, 197

nnet, 76

parallel, 76

plant.ecol, 265

plotly, 346

plotrix, 78

purrr, 120

rJava, 292

reactable, 43

readr, 120

reshape2, 135

reticulate, 292, 300, 338

rgl, 194

rmarkdown, 37, 40

rpart, 76

scatterplot3d, 191

sf, 239, 245

shiny, 345, 352

sloop, 273, 283

spatial, 76

spdep, 78

splines, 76

stats4, 76, 283

stats, 76

streamDAG, 241, 318

stringr, 120

survival, 76

svDialogs, 345

svGUI, 345

tabular, 76

tcltk2, 345

tcltk, 76, 329

tibble, 120, 123

tidyr, 120

tidyverse, 7, 78, 120

tinytex, 38

tools, 76

tweenr, 245

usethis, 264

utils, 76

vegan, 78, 191

vioplot, 182

xtable, 43

popularity of, 2

R-editor, 26

R-GUI, 11

R-profile, 23

Rcmd.exe, 295

S3 (object type), 272

S4 (object type), 272

typefaces, 153

vector, 49

vignette, 21

R Journal (the), 328

R-forge (package repository), 75

Radix, 383

Regular expression, 106

RStudio, 34

chunk, 40

project, 36

R Markdown, 36, 108

RStudioGD, 329

RWinEdt, 26

S (programming language), 2

Scheme (programming language), 269

Scope (computer science), 2

Shared library, 294

408 INDEX OF TERMS

Significand, 386

significant indentation, 44

Subnormal number, 392

Sweave, 36

Tcl (programming language), 329

Tcl/Tk, 329

Terminality (of binary expressions), 389

Tinn-R, 26

Transformation (function), 166, 210

Transistor, 383

Trellis graphics, 197

Underflow (arithmetic), 392

Unicode, 392

Unified extensible firmware interface

(UEFI), 383

UTF-16, 392

UTF-8, 392

Video card, 383

Widget (GUI controller), 327

Windows (operating system)

DPI, 329

Working directory, 24

YAML, 360

Zenodo (package and code repository), 75

Index of R Operators and Functions

+, 27
̀, 15
-, 27
*, 27
∧, 27

#, 13
:, 80
::, 75
:::, 75
&, 57
&&, 57
<-, 14
<<-, 256, 331
$, 54
==, 57
!=, 57
%*%, 51
%/%, 27
%%, 27, 266
%in%, 101, 270
%o%, 95
<, 57
<=, 57
>, 57
>=, 57
|, 57
||, 57
?, 20
;, 12
[], 66
[[]], 67
tidyverse::. (dot operator), 121

∼, 93

..., 262

.C(), 294, 299

.Call(), 294

.External(), 294, 329

.First(), 23

.Fortran(), 294, 299

.Last(), 23

.Primitive(), 253

.libPaths(), 73
D(), 31
DescTools::StrCountW(), 113
Filter(), 270
Find(), 270
GGally:ggcoef(), 351
IQR(), 33
Inf, 30
Map(), 270
Negate(), 270
Position(), 270
R CMD BATCH, 295, 324
R CMD INSTALL, 295, 324
R CMD REMOVE, 295
R CMD Rconfig, 295
R CMD Rd2pdf, 295, 322
R CMD Rd2txt, 322
R CMD Rdconv, 322
R CMD Rdiff, 295
R CMD Rprof, 295
R CMD SHLIB, 295, 299
R CMD Stangle, 295
R CMD Sweave, 295
R CMD build, 295, 324
R CMD check, 295, 324
R CMD config, 295
R CMD open, 295

409

410 INDEX OF R OPERATORS AND FUNCTIONS

R CMD texify, 295
Reduce(), 270
Sys.sleep(), 192, 194
Sys.timezone(), 134
Sys.which(), 301
WindowsFonts(), 156
X11(), 144
abline(), 166
abs(), 27
acos(), 30
aggregate(), 93
all(), 61
animation::saveGIF(), 194, 242
any(), 61
apply(), 89, 130
array(), 53
arrows(), 184
as.Date(), 134
as.array(), 62
as.character(), 62
as.double(), 62
as.factor(), 62
as.integer(), 62
as.list(), 62
as.matrix(), 62
as.numeric(), 62
as.raw(), 393
asbio::G.mean(), 33
asbio::H.mean(), 33
asbio::Mode(), 33
asbio::anm.ci.tck(), 331
asbio::bin2dec(), 388
asbio::bplot(), 186
asbio::bplot, 184
asbio::dec2bin(), 385
asbio::kurt(), 33, 258
asbio::pairw.anova(), 186, 275
asbio::pairw.fried(), 275
asbio::pairw.oneway(), 275
asbio::skew(), 33, 258
asin(), 30
atan(), 30
attach(), 54
attr(), 50, 59
attributes(), 50

axis(), 152
barplot(), 140, 179, 199
bitmap(), 144
bmp(), 144
body(), 254
box(), 158, 162
boxplot(), 140, 180
break, 267
browseVignettes(), 22
c(), 16, 49
cairo_pdf(), 144
cairo_ps(), 144
car::scatter3d(), 194
cat(), 23, 274
cbind(), 52
ceiling(), 27
chol(), 51
choose(), 27
class(), 16, 59
cluster::agnes(), 142
cluster::plot.agnes(), 142
col.names(), 54
colMeans(), 90
colSums(), 90
colorRampPalette(), 162
colors(), 156
colorspace::hclwizard(), 162, 179
complete.cases(), 63
cor(), 33
cos(), 30
cov(), 33
cowplot::axis_canvas, 239
cowplot::gg_draw, 239
cowplot::insert_xaxis_grob, 239
cowplot::insert_yaxis_grob, 239
cowplot::plot_grid, 222
cumsum(), 27, 270
data.frame(), 53
date(), 23
deSolve::euler(), 286
deSolve::rk4(), 286
demo(), 21
det(), 51
detach(), 54, 74
dev.cur(), 145

INDEX OF R OPERATORS AND FUNCTIONS 411

dev.new(), 145, 329
dev.off(), 206
dev.set(), 145
devtools::install_github(), 265
diag(), 71
dim(), 49
do.call(), 57
dotchart(), 140
dplyr::arrange(), 124, 127
dplyr::desc(), 128
dplyr::ends_with(), 129
dplyr::filter(), 65, 124, 126
dplyr::group_by(), 124, 125
dplyr::mutate(), 124, 129
dplyr::reframe(), 217
dplyr::select(), 128
dplyr::slice_max(), 128
dplyr::slice_min(), 128
dplyr::starts_with(), 129
dplyr::summarise(), 124, 226
dpylr::select(), 124
droplevels(), 70
dyn.load(), 299
ead.dcf(), 323
eigen(), 51
else(), 61
environment(), 255
eval(), 31, 334
evalq(), 338
example(), 21
exp(), 30, 121
expand.grid(), 157
expression(), 31, 151
facet_grid(), 219
factor(), 59, 136
factorial(), 27
file.choose(), 25, 83
file.create(), 23, 294
fix(), 79
floor(), 27
for(), 264
formals(), 254
function(), 23, 32, 251
gWidgets::gcheckboxgroup(), 345
gamma(), 27

get(), 253, 354
getwd(), 24
gginnards::geom_debug(), 214
ggnimate::ease_aes, 245
ggnimate::transition_time, 245
ggplot2::+, 205
ggplot2::aes(), 204
ggplot2::after_stat, 212
ggplot2::colour(), 204
ggplot2::element_text(), 205
ggplot2::expand_limits(), 241
ggplot2::facet_grid(), 237
ggplot2::facet_wrap(), 219, 237
ggplot2::freqpoly(), 367
ggplot2::geom_abline(), 204
ggplot2::geom_area(), 204, 224
ggplot2::geom_bar(), 204, 224
ggplot2::geom_bin2d(), 204
ggplot2::geom_boxplot(), 204, 205
ggplot2::geom_col(), 204
ggplot2::geom_contour_filled(), 204
ggplot2::geom_count(), 204
ggplot2::geom_crossbar(), 204, 230
ggplot2::geom_curve(), 204
ggplot2::geom_density(), 204, 224
ggplot2::geom_density_2d(), 204
ggplot2::geom_density_2d_filled(),

204

ggplot2::geom_dotplot(), 204, 224
ggplot2::geom_errorbar(), 204, 227,

228

ggplot2::geom_errorbarh(), 204
ggplot2::geom_freq(), 224
ggplot2::geom_freqpoly(), 204
ggplot2::geom_function(), 204
ggplot2::geom_hex(), 204
ggplot2::geom_hist(), 224
ggplot2::geom_histogram(), 204
ggplot2::geom_hline(), 204
ggplot2::geom_jitter(), 204
ggplot2::geom_label(), 211
ggplot2::geom_line(), 207
ggplot2::geom_linerange(), 204
ggplot2::geom_point(), 204
ggplot2::geom_pointsrange(), 204

412 INDEX OF R OPERATORS AND FUNCTIONS

ggplot2::geom_ribbon(), 204
ggplot2::geom_segment(), 204
ggplot2::geom_sf(), 241
ggplot2::geom_smooth(), 211
ggplot2::geom_sum(), 204
ggplot2::geom_text(), 204
ggplot2::geom_vline(), 204
ggplot2::ggplot(), 202
ggplot2::ggplot_build(), 214
ggplot2::group(), 204
ggplot2::labs(), 210
ggplot2::linetype(), 204
ggplot2::scale_fill_brewer(), 224
ggplot2::scale_x_continuous(), 210
ggplot2::scale_x_log10(), 210
ggplot2::scale_y_continuous(), 210
ggplot2::scale_y_log10(), 210
ggplot2::sec_axis(), 217
ggplot2::stat_summary(), 227, 228
ggplot2::theme(), 203
ggplot2::theme_bw(), 203
ggplot2::theme_classic(), 203, 210
ggplot2::theme_dark(), 203
ggplot2::theme_minimal(), 203
ggplot2::xlab(), 205
ggplot2::ylab(), 210
ggplot::plot.ggplot(), 206
ggplot::print.ggplot(), 206
ggpmisc::stat_poly_eq(), 212
ggpubr::geom_pwc(), 235
ggpubr::ggbarplot(), 235
ggpubr::ggboxplot(), 235
ggspatial::annotation_north_arrow(),

241

ggspatial::annotation_scale(), 241
gregexpr(), 106
grep(), 104, 270
grepl(), 104
gsub(), 104
head(), 79, 122
help(), 20
hist(), 140, 171, 199
history(), 24
htmltools::br(), 363
htmltools::h1(), 363

identify(), 139
if(), 61
ifelse(), 61, 341
image(), 199
install.packages(), 72
integrate(), 31
interaction(), 60
is.array(), 59
is.character(), 59
is.double(), 59
is.factor(), 59
is.integer(), 59
is.list(), 59
is.matrix(), 59
is.na(), 63
is.nan(x), 65
is.null(), 65
is.numeric(), 59
is.primitive(), 253
is.vector(), 49
jpeg(), 144
knitr::is_html_output(), 43
knitr::is_latex_output(), 43
knitr::opts_chunk(), 40
knitr::purl(), 47
lapply(), 92, 93, 194, 242, 269
lattice::barchart(), 199
lattice::contourplot(), 201
lattice::histogram(), 199
lattice::levelplot(), 199, 201
lattice::plot.trellis(), 201
lattice::wireframe(), 199, 201
lattice::xyplot(), 199
layout(), 146
legend(), 174
levels(), 174
library(), 23, 73
lines(), 149
list(), 55
lm(), 166, 191, 262
load(), 25, 81
loadhistory(), 25
locator(), 139
loess(), 211
log(), 27, 30, 121

INDEX OF R OPERATORS AND FUNCTIONS 413

lower.tri(), 71
lubridate::as_datetime(), 134
lubridate::days(), 134
lubridate::ddays(), 134
lubridate::dminutes(), 134
lubridate::dmonths(), 134, 135
lubridate::dmy(), 134
lubridate::dmy_hms(), 134
lubridate::dseconds(), 134
lubridate::int_end(), 135
lubridate::int_length(), 135
lubridate::int_start(), 135
lubridate::mdy(), 134
lubridate::minutes(), 134
lubridate::months(), 134
lubridate::seconds(), 134
lubridate::ymd(), 134
lubridate::ymd_hms(), 134
magrittr::%<>% (assignment pipe), 123

magrittr::%T>% (tee pipe), 123, 130
margrittr::%>% (pipe operator), 120
match(), 100
match.arg(), 260, 281
matplot(), 186
matrix(), 51
max(), 33
mean(), 19, 33, 255
median(), 33
min(), 33
missForest::missForest(), 249
mtext(), 152
names(), 50
new(), 281
new.env(), 339
noquote(), 281
numToBits(), 390
objects(), 253
old.packages(), 73
options(), 22
order(), 98
ordered(), 60
outer(), 94
package.skeleton(), 318
packageDescription(), 78
packageVersion(), 78

packages(), 74
palette(), 160
palette.pals(), 160
parse(), 334
paste(), 103, 150
pdf(), 144, 206
pdfFonts(), 156
persp(), 199
pie(), 140
pi, 30
plant.ecol::radiation.heatl(), 265
plolty::ggplotly(), 348
plot(), 20, 140–142, 199
plotly::add_lines(), 347
plotly::add_trace(), 347
plotly::layout(), 347
plotly::plot_ly(), 347
png(), 144, 156
points(), 149
polygon(), 152
postscript(), 144
predict.lm(), 166
prod(), 27
q(), 11
qr(), 51
quantile(), 33
quartz(), 144
quote(), 338
rank(), 98
rawToBits(), 393
rawToChar(), 393
rbind(), 52
read.table(), 81
readLines(), 113
rect(), 152
regmatches(), 106
remove(), 55
rep(), 81
repeat, 267
replace(), 97
replicate(), 57
reshape(), 95
reshape2::melt(), 135, 226
reshape2::melt.data.frame(), 135
reticulate::import(), 311

414 INDEX OF R OPERATORS AND FUNCTIONS

reticulate::py_install(), 302
reticulate::py_run_file, 338
reticulate::py, 311
reticulate::source_python(), 337
reticulate::use_python(), 301
rev(), 103
rgb(), 157
rm(), 19, 55
rnorm(), 12
round(), 27
row.names(), 54
rowMeans(), 90
rowSums(), 90
rownames(), 281
runif(), 313
sapply(), 74, 92, 253, 341
save(), 25, 318
save.image(), 25, 254
savehistory(), 25
scan(), 80, 82
scatterplot3d::scatterplot3d(), 191
sd(), 33
segments(), 184
seq(), 80
sessionInfo(), 74
setClass(), 281
setMethod(), 282
setRefClass(), 272
setwd(), 24, 36
sf::st_coordinates()), 249
sf::st_read(), 239
shiny::actionButton(), 356
shiny::checkboxGroupInput(), 356
shiny::checkboxInput, 356
shiny::column(), 352, 363
shiny::dateInput(), 356
shiny::dateRangeInput(), 356
shiny::downloadButton(), 358
shiny::downloadHandler(), 359
shiny::downloadLink(), 358
shiny::fileInput(), 356
shiny::fluidPage(), 352
shiny::fluidRow(), 352, 363
shiny::helpText(), 356
shiny::htmlOutput(), 358

shiny::imageOutput(), 358
shiny::mainPanel(), 368
shiny::modalButton(), 358
shiny::modalDialog(), 358
shiny::navbarMenu(), 371
shiny::navbarPage(), 371
shiny::numericInput(), 356, 367
shiny::outputOptions(), 358
shiny::passwordInput(), 356
shiny::plotOutput(), 363
shiny::radioButtons(), 356
shiny::reactive(), 364
shiny::removeNotification(), 358
shiny::renderImage(), 359
shiny::renderPlot(), 359, 364
shiny::renderPrint(), 354, 359
shiny::renderTable(), 354
shiny::renderText(), 359
shiny::selectInput(), 353, 356
shiny::showNotification(), 358
shiny::sidebarLayout(), 367
shiny::sidebarPanel(), 367
shiny::sliderInput(), 356
shiny::submitButton(), 356
shiny::tabPanel(), 369
shiny::tableOutput(), 353
shiny::tabsetPanel(), 369
shiny::textInput(), 356
shiny::textOutput(), 358
shiny::uiOutput(), 358
shiny::urlModal(), 358
shiny::verbatimTextOutput(), 353,

358

show(), 282
sin(), 30, 122
sloop::ftype(), 275
sloop::otype(), 273, 283
sloop::s3_dispatch(), 274
smoothScatter(), 141
solve(), 51
sort(), 98
source(), 26, 156
spineplot(), 141
split(), 65, 253
sprintf(), 367

INDEX OF R OPERATORS AND FUNCTIONS 415

sqrt(), 27
stack(), 95
stats4::mle(), 283
stem(), 140
stop(), 260, 261
str(), 56
streamDAG::STIC.RFimpute(), 249
streamDAG::arc.pa.from.nodes(), 249
streamDAG::assign_pa_to_segments(),

249

streamDAG::streamDAGs(), 249
streamDAG::vector_segments(), 249
stringr::str_extract(), 132
stringr::str_length(), 131
stringr::str_replace(), 131, 132
stringr::str_subset(), 132
stripchart(), 140
strptime(), 114
strsplit, 102
structure(), 274
subset(), 65, 66
substitute(), 339
sum(), 27
summary(), 79
sunflowerplot(), 141
svd(), 51
svg(), 144
switch(), 259, 281
system.time(), 269, 299
t(), 51
t.test(), 367
tail(), 122
tan(), 30
tapply(), 92
tcltk::.Tcl.objv(), 329
tcltk::tcl(), 329
tcltk::tclVar(), 331
tcltk::tclvalue(), 331
tcltk::tkbutton(), 330

tcltk::tkcanvas(), 334
tcltk::tkdestroy(), 330
tcltk::tkentry(), 332
tcltk::tkgrid(), 332, 338
tcltk::tkimage.create(), 341
tcltk::tklabel(), 330
tcltk::tkmessage(), 331
tcltk::tkpack(), 330, 333
tcltk::tkscale(), 339
tcltk::tktoplevel(), 330
tcltk::ttklabel.create(), 341
tcltk::ttkradiobutton(), 341
text(), 149
theme(), 208
tibble::as_tibble(), 123
tibble::tibble(), 123
tidyr::gather(), 135
tiff(), 144
tolower(), 114
toupper(), 114
typeof(), 17, 59
unique(), 99
uniroot(), 287
unlist(), 103
unstack(), 95, 179
update.packages(), 73
upper.tri(), 71
var(), 33
vegan::diversity(), 75
vignette(), 21
vioplot::vioplot(), 182
which(), 97
while(), 267
windows(), 144
with(), 55, 286
xfig(), 144
xtable::xtable(), 43

View(), 79

	Preface
	What this book is about
	What this book is not about
	Distinguishing Characteristics of This Book
	Conventions
	Acknowledgements and Corrections

	Welcome to R
	What is R?
	R and Biology
	Popularity of R
	A Brief History
	Copyrights and Licenses
	R and Reliability
	Installation
	Exercises

	Some Basics
	First Steps
	First Operations
	Expressions, Assignments and Objects
	Getting Help
	Options
	The Working Directory
	Saving and Loading Your Work
	Basic Mathematics
	RStudio
	Exercises

	Data Objects, Packages, and Datasets
	Data Storage Objects
	Boolean Operations
	Testing and Coercing Classes
	Accessing and Subsetting Data With []
	Packages
	Facilitating Command Line Data Entry
	Importing Data Into R
	Exercises

	Basic Data Management
	Operations on Arrays, Lists and Vectors
	Other Simple Data Management Functions
	Matching, Querying and Substituting in Strings
	Date-Time Classes
	Exercises

	Welcome to the Tidyverse
	The Tidyverse
	Pipes
	tibble
	dplyr
	stringr
	lubridate
	reshape2
	Exercises

	Base Graphics
	Introduction
	Simple Base Graphics Examples
	Graphical Devices
	par()
	Exporting Graphics
	text(), points(), and lines()
	Geometric Shapes
	axis()
	Font Typefaces
	Colors
	Scatterplots
	Transformations
	Multiple Plots
	Histograms
	Controlling Graphical Features using Vectors
	Secondary Axes
	Barplots
	Boxplots
	Interval Plots
	matplot()
	Interactivity
	Three Dimensional Graphics
	Animation
	Exercises

	Grid Graphics, Including ggplot2
	Grid Graphics
	lattice
	ggplot2
	Exercises

	Functions
	Introduction to Functions
	Global vs. Local Variables
	Useful Functions for Writing Functions
	Loops
	Functional Programming
	Functions with Classes and Methods
	Advanced Biometric Examples
	The Process of Function Evaluation in R
	Exercises

	R Interfaces
	Interpreted versus Compiled Languages
	Interfacing with R Markdown/RStudio
	Fortran and C
	C++
	Python
	Exercises

	Building R Packages
	Introduction
	Package Components
	Datasets (the data Subdirectory)
	R Code (the r Subdirectory)
	Documentation (the man Subdirectory)
	The DESCRIPTION File
	The NAMESPACE File
	Exercises

	Interactive and Web Applications
	Introduction to GUIs
	tcltk
	JS and JSON Interactive Apps
	plotly
	shiny
	Comparison of GUI-generating Approaches
	Exercises

	R and Your Computer
	How Do Computers Work?
	Base-2 and Base-10
	Bits and Bytes
	Decimal to Binary
	Binary to Decimal
	Double Precision
	Binary Characters
	Optimizing R
	Exercises

	Index of Terms
	Index of R Operators and Functions

	4.Plus:
	4.Reset:
	4.Minus:
	4.EndRight:
	4.StepRight:
	4.PlayPauseRight:
	4.PlayRight:
	4.PauseRight:
	4.PlayPauseLeft:
	4.PlayLeft:
	4.PauseLeft:
	4.StepLeft:
	4.EndLeft:
	anm4:
	4.99:
	4.98:
	4.97:
	4.96:
	4.95:
	4.94:
	4.93:
	4.92:
	4.91:
	4.90:
	4.89:
	4.88:
	4.87:
	4.86:
	4.85:
	4.84:
	4.83:
	4.82:
	4.81:
	4.80:
	4.79:
	4.78:
	4.77:
	4.76:
	4.75:
	4.74:
	4.73:
	4.72:
	4.71:
	4.70:
	4.69:
	4.68:
	4.67:
	4.66:
	4.65:
	4.64:
	4.63:
	4.62:
	4.61:
	4.60:
	4.59:
	4.58:
	4.57:
	4.56:
	4.55:
	4.54:
	4.53:
	4.52:
	4.51:
	4.50:
	4.49:
	4.48:
	4.47:
	4.46:
	4.45:
	4.44:
	4.43:
	4.42:
	4.41:
	4.40:
	4.39:
	4.38:
	4.37:
	4.36:
	4.35:
	4.34:
	4.33:
	4.32:
	4.31:
	4.30:
	4.29:
	4.28:
	4.27:
	4.26:
	4.25:
	4.24:
	4.23:
	4.22:
	4.21:
	4.20:
	4.19:
	4.18:
	4.17:
	4.16:
	4.15:
	4.14:
	4.13:
	4.12:
	4.11:
	4.10:
	4.9:
	4.8:
	4.7:
	4.6:
	4.5:
	4.4:
	4.3:
	4.2:
	4.1:
	4.0:
	3.Plus:
	3.Reset:
	3.Minus:
	3.EndRight:
	3.StepRight:
	3.PlayPauseRight:
	3.PlayRight:
	3.PauseRight:
	3.PlayPauseLeft:
	3.PlayLeft:
	3.PauseLeft:
	3.StepLeft:
	3.EndLeft:
	anm3:
	3.99:
	3.98:
	3.97:
	3.96:
	3.95:
	3.94:
	3.93:
	3.92:
	3.91:
	3.90:
	3.89:
	3.88:
	3.87:
	3.86:
	3.85:
	3.84:
	3.83:
	3.82:
	3.81:
	3.80:
	3.79:
	3.78:
	3.77:
	3.76:
	3.75:
	3.74:
	3.73:
	3.72:
	3.71:
	3.70:
	3.69:
	3.68:
	3.67:
	3.66:
	3.65:
	3.64:
	3.63:
	3.62:
	3.61:
	3.60:
	3.59:
	3.58:
	3.57:
	3.56:
	3.55:
	3.54:
	3.53:
	3.52:
	3.51:
	3.50:
	3.49:
	3.48:
	3.47:
	3.46:
	3.45:
	3.44:
	3.43:
	3.42:
	3.41:
	3.40:
	3.39:
	3.38:
	3.37:
	3.36:
	3.35:
	3.34:
	3.33:
	3.32:
	3.31:
	3.30:
	3.29:
	3.28:
	3.27:
	3.26:
	3.25:
	3.24:
	3.23:
	3.22:
	3.21:
	3.20:
	3.19:
	3.18:
	3.17:
	3.16:
	3.15:
	3.14:
	3.13:
	3.12:
	3.11:
	3.10:
	3.9:
	3.8:
	3.7:
	3.6:
	3.5:
	3.4:
	3.3:
	3.2:
	3.1:
	3.0:
	2.Plus:
	2.Reset:
	2.Minus:
	2.EndRight:
	2.StepRight:
	2.PlayPauseRight:
	2.PlayRight:
	2.PauseRight:
	2.PlayPauseLeft:
	2.PlayLeft:
	2.PauseLeft:
	2.StepLeft:
	2.EndLeft:
	anm2:
	2.99:
	2.98:
	2.97:
	2.96:
	2.95:
	2.94:
	2.93:
	2.92:
	2.91:
	2.90:
	2.89:
	2.88:
	2.87:
	2.86:
	2.85:
	2.84:
	2.83:
	2.82:
	2.81:
	2.80:
	2.79:
	2.78:
	2.77:
	2.76:
	2.75:
	2.74:
	2.73:
	2.72:
	2.71:
	2.70:
	2.69:
	2.68:
	2.67:
	2.66:
	2.65:
	2.64:
	2.63:
	2.62:
	2.61:
	2.60:
	2.59:
	2.58:
	2.57:
	2.56:
	2.55:
	2.54:
	2.53:
	2.52:
	2.51:
	2.50:
	2.49:
	2.48:
	2.47:
	2.46:
	2.45:
	2.44:
	2.43:
	2.42:
	2.41:
	2.40:
	2.39:
	2.38:
	2.37:
	2.36:
	2.35:
	2.34:
	2.33:
	2.32:
	2.31:
	2.30:
	2.29:
	2.28:
	2.27:
	2.26:
	2.25:
	2.24:
	2.23:
	2.22:
	2.21:
	2.20:
	2.19:
	2.18:
	2.17:
	2.16:
	2.15:
	2.14:
	2.13:
	2.12:
	2.11:
	2.10:
	2.9:
	2.8:
	2.7:
	2.6:
	2.5:
	2.4:
	2.3:
	2.2:
	2.1:
	2.0:
	1.Plus:
	1.Reset:
	1.Minus:
	1.EndRight:
	1.StepRight:
	1.PlayPauseRight:
	1.PlayRight:
	1.PauseRight:
	1.PlayPauseLeft:
	1.PlayLeft:
	1.PauseLeft:
	1.StepLeft:
	1.EndLeft:
	anm1:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	0.Plus:
	0.Reset:
	0.Minus:
	0.EndRight:
	0.StepRight:
	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	0.StepLeft:
	0.EndLeft:
	anm0:
	0.359:
	0.358:
	0.357:
	0.356:
	0.355:
	0.354:
	0.353:
	0.352:
	0.351:
	0.350:
	0.349:
	0.348:
	0.347:
	0.346:
	0.345:
	0.344:
	0.343:
	0.342:
	0.341:
	0.340:
	0.339:
	0.338:
	0.337:
	0.336:
	0.335:
	0.334:
	0.333:
	0.332:
	0.331:
	0.330:
	0.329:
	0.328:
	0.327:
	0.326:
	0.325:
	0.324:
	0.323:
	0.322:
	0.321:
	0.320:
	0.319:
	0.318:
	0.317:
	0.316:
	0.315:
	0.314:
	0.313:
	0.312:
	0.311:
	0.310:
	0.309:
	0.308:
	0.307:
	0.306:
	0.305:
	0.304:
	0.303:
	0.302:
	0.301:
	0.300:
	0.299:
	0.298:
	0.297:
	0.296:
	0.295:
	0.294:
	0.293:
	0.292:
	0.291:
	0.290:
	0.289:
	0.288:
	0.287:
	0.286:
	0.285:
	0.284:
	0.283:
	0.282:
	0.281:
	0.280:
	0.279:
	0.278:
	0.277:
	0.276:
	0.275:
	0.274:
	0.273:
	0.272:
	0.271:
	0.270:
	0.269:
	0.268:
	0.267:
	0.266:
	0.265:
	0.264:
	0.263:
	0.262:
	0.261:
	0.260:
	0.259:
	0.258:
	0.257:
	0.256:
	0.255:
	0.254:
	0.253:
	0.252:
	0.251:
	0.250:
	0.249:
	0.248:
	0.247:
	0.246:
	0.245:
	0.244:
	0.243:
	0.242:
	0.241:
	0.240:
	0.239:
	0.238:
	0.237:
	0.236:
	0.235:
	0.234:
	0.233:
	0.232:
	0.231:
	0.230:
	0.229:
	0.228:
	0.227:
	0.226:
	0.225:
	0.224:
	0.223:
	0.222:
	0.221:
	0.220:
	0.219:
	0.218:
	0.217:
	0.216:
	0.215:
	0.214:
	0.213:
	0.212:
	0.211:
	0.210:
	0.209:
	0.208:
	0.207:
	0.206:
	0.205:
	0.204:
	0.203:
	0.202:
	0.201:
	0.200:
	0.199:
	0.198:
	0.197:
	0.196:
	0.195:
	0.194:
	0.193:
	0.192:
	0.191:
	0.190:
	0.189:
	0.188:
	0.187:
	0.186:
	0.185:
	0.184:
	0.183:
	0.182:
	0.181:
	0.180:
	0.179:
	0.178:
	0.177:
	0.176:
	0.175:
	0.174:
	0.173:
	0.172:
	0.171:
	0.170:
	0.169:
	0.168:
	0.167:
	0.166:
	0.165:
	0.164:
	0.163:
	0.162:
	0.161:
	0.160:
	0.159:
	0.158:
	0.157:
	0.156:
	0.155:
	0.154:
	0.153:
	0.152:
	0.151:
	0.150:
	0.149:
	0.148:
	0.147:
	0.146:
	0.145:
	0.144:
	0.143:
	0.142:
	0.141:
	0.140:
	0.139:
	0.138:
	0.137:
	0.136:
	0.135:
	0.134:
	0.133:
	0.132:
	0.131:
	0.130:
	0.129:
	0.128:
	0.127:
	0.126:
	0.125:
	0.124:
	0.123:
	0.122:
	0.121:
	0.120:
	0.119:
	0.118:
	0.117:
	0.116:
	0.115:
	0.114:
	0.113:
	0.112:
	0.111:
	0.110:
	0.109:
	0.108:
	0.107:
	0.106:
	0.105:
	0.104:
	0.103:
	0.102:
	0.101:
	0.100:
	0.99:
	0.98:
	0.97:
	0.96:
	0.95:
	0.94:
	0.93:
	0.92:
	0.91:
	0.90:
	0.89:
	0.88:
	0.87:
	0.86:
	0.85:
	0.84:
	0.83:
	0.82:
	0.81:
	0.80:
	0.79:
	0.78:
	0.77:
	0.76:
	0.75:
	0.74:
	0.73:
	0.72:
	0.71:
	0.70:
	0.69:
	0.68:
	0.67:
	0.66:
	0.65:
	0.64:
	0.63:
	0.62:
	0.61:
	0.60:
	0.59:
	0.58:
	0.57:
	0.56:
	0.55:
	0.54:
	0.53:
	0.52:
	0.51:
	0.50:
	0.49:
	0.48:
	0.47:
	0.46:
	0.45:
	0.44:
	0.43:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

